
Mixed Constrained Image Filter Design Using Particle Swarm
Optimization

 Zhiguo Bao and Takahiro Watanabe

Graduate School of Information Production and Systems, Waseda University
Kitakyushu-shi, Japan

(Email: baozhiguo@moegi.waseda.jp)

Abstract: This paper describes evolutionary image filter design for noise reduction using particle swarm optimization
(PSO), where mixed constraints on the circuit complexity, power and signal delay are optimized. First, the evaluating
values about correctness, complexity, power and signal delay are introduced to the fitness function. Then PSO
autonomously synthesizes a filter. To verify the validity of our method, an image filter for noise reduction is
synthesized. The performance of resultant filter by PSO is similar to that of Genetic Algorithm (GA), but the running
time of PSO is 10% shorter than that of GA.

Keywords: PSO, Evolutionary Design, Image Filter.

I. INTRODUCTION

The idea of evolutionary hardware design was
introduced at the beginning of 1990s in papers [1, 2],
and it is usually defined as an approach in which the
Genetic Algorithm (GA) is utilized to search for a
suitable configuration of a reconfigurable device in
order to meet a given specification.

The image filter design problem is often approached
by means of evolutionary design techniques. In addition
to an optimization of filter coefficients (for example,
[3]), evolutionary approaches are applied to find a
complete structure of image filters. In [4], Gaussian
noise filters were evolved using a variant of Cartesian
Genetic Programming in which target filters were
composed of simple digital components, such as logic
gates, adders and comparators. Later, image filters for
other types of noise and edge detectors were evolved
using the same technique [5]. But they did not discuss
any circuit constraints such as complexity, power
consumption and signal delay, while we proposed mixed
constrained design optimization using GA for some
combinational circuits [6, 7]. The proposed method
could synthesize good circuits about complexity, power
and signal delay, but it took the large running time for
GA process. As another optimization method, particle
swarm optimization (PSO) [8, 9, 10] was proposed and
evaluated, and it is promising to find a good solution in
shorter time, compared to GA.

This paper applies PSO to mixed constrained image
filter design for noise reduction, shown in Fig. 1. The
circuit complexity, power and signal delay which are

caused by both logic gates and wires, are optimized. In
this design, first, the evaluating value about correctness,
complexity, power and signal delay are introduced to
the fitness function. Then PSO autonomously
synthesizes an image filter which is simpler and has
better performance than the conventional design. To
verify the validity of our method, an image filter for
reducing noise is experimentally synthesized.

The organization of this paper is as follows: a brief
overview of PSO is described in the next section.
Section III describes design optimization for an image
filter using PSO. Section IV shows the experimental
results. Finally, Sect. V concludes this paper.

Fig. 1. The overview of our method

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 230

II. Particle swarm optimization

Particle swarm optimization (PSO) is an algorithm
model on swarm intelligence that finds a solution to an
optimization problem in a search space, shown in Fig. 2.

In PSO, a particle represents a candidate solution to
the problem. Each particle is treated as a point in the D-
dimensional problem space. The i-th particle is
represented as Xi = (xi1, xi2, … , xiD). The best previous
position (the position giving the best fitness value) of
the i-th particle is recorded and represented as Pi = (pi1,
pi2, … , piD). The index of the best particle among all the
particles in the population is represented by the symbol
g. The rate of the position change (velocity) for particle
i is represented as Vi = (vi1, vi2, … , viD). The particle is
updated according to the following equations:

(1)

(2)

where,

0 <= i <= (n-1), 1 <= d <= D.
n : number of particles in a group.
D : number of members in a particle.
t: pointer of iterations (generations).
w : inertia weight factor.
c1, c2 : acceleration constant.
rand(), Rand(): uniform random value in the range [0,1].

)(t
idv : velocity of particle i at iteration t,

max)(min
d

t
idd VvV ≤≤ .

)(t
ix : current position of particle i at iteration t.

Fig. 2. The evolutionary process of PSO

The inertia weight factor w is employed to control
the impact of the previous history of velocities on the
current velocity, thereby influencing the trade-off
between global (wide-ranging) and local (fine-grained)
exploration abilities of the “flying points”. A larger
inertia weight facilitates global exploration (searching
new areas), while a smaller inertia weight tends to
facilitate local exploration to free tune the current
search area. Suitable selection of the inertia weight
provides a balance between global and local exploration
abilities and thus requires lesser iterations on average to
find the optimum. Good values of w are usually slightly
less than 1 [10]. It could be randomly initialized for
each particle. Or a high value of w at the beginning of
the run facilitates global search, while a small w tends to
localize the search.

c1 and c2 are constants that say how much the
particle is directed towards good positions. They
represent a “cognitive” and a “social” component,
respectively, in that they affect how much the particle’s
personal best and the global best (respectively)
influence its movement. Usually we take c1 = c2 = 2
[10].

III. Image filter design using PSO

PSO is applied to search good solutions to optimize
the image filter design.

The target image filter is to provide identical
functional behavior with less complexity, less power
and less signal delay.

1. Image filter
Every image operator is considered as a digital

circuit with nine 8-bit inputs and a single 8-bit output,
which processes gray-scaled (8-bit/pixel) images.

As shown in Fig. 3, every pixel value of the filtered
image is calculated using a corresponding pixel and its
eight neighbors in the processed image [5].

2. Reconfigurable processing array for image filter
Similarly to [11], the reconfigurable image filter is

implemented as a Virtual Reconfigurable Circuits
(VRC) (Fig. 4). As a new pixel value is calculated using
nine pixels, the VRC has got nine 8-bit inputs and a
single 8-bit output. The VRC consists of two-input
CLBs (Configurable Logic Blocks in FPGA) placed in a
4*4 array. Any input of each CLB may be connected to
either a primary circuit input or the output of a CLB in
the preceding column. Any CLB can be programmed to

).(()

)(()
)(

2

)(
1

)1(

t
idgd

t
ididid

t
id

xpRandc

xprandcvwv

−××+

−××+×=+

.)1()()1(++ += t
id

t
id

t
id vxx

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 231

implement one of the functions given in Table 1 [5]. All
these functions operate with 8-bit operands and produce
8-bit results. Table 1 also gives value of complexity
(FC), power (FP) and signal delay (SD) for each
function in a CLB.

Fig. 3. A candidate image filter

In Fig. 4, there are position of inputs and output of

each logic block. Therefore, we add values of wire
about complexity, power and signal delay in Table 1.

3. Genetic encoding
The chromosome (particle) is a string of integers

where each three continuous integers constitute a logic
block. Each triplet in the chromosome encodes the two
inputs and the function type of a logic block,
respectively, such as:

(Input_1, Input_2, Function type).
A typical chromosome then can be a sequence of

triplets [6, 7], such as:
(IN1

1, IN2
1, Ftype

1) … (IN1
i, IN2

i, Ftype
i) …

Here, IN1
i and IN2

i mean positions of the
corresponding signal. Ftype

i means Function_type. For
primary input from I0 to I8, the range of INi is (0 <= INi
<= 8). For input from output of a logic block CLBm,
that is, CLB9 to CLB24 in Fig. 4, INi = m. Function in a
CLB is defined as shown in Table 1.

Fig. 4. A reconfigurable processing array

Table 1. Functions implements in a CLB

4. Fitness function
The pixels of corrupted image ci are used as inputs

of VRC. Pixels of filtered image fi are generated, which
are compared to the pixels of original image oi.

The design objective is to minimize the difference
between the filtered image and the original image. The
image size is nc*nr pixels, but only the area of (nc-
2)*(nr-2) pixels is considered, because the pixel values
at the borders are ignored, and thus remain unfiltered.
The fitness value of a candidate filter is obtained as
follows:

(1) the VRC is configured using a candidate
chromosome

(2) the created circuit is used to produce pixel values
in the image fi and

(3) the fitness value is calculated as

(3)

).()1(21 FFFitness +××−= β

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 232

Where, F1 and F2 are defined as follows and β is
the weight on F1.

(4)

Where,

nc: the number of columns of the pixels in the image.
nr: the number of rows of the pixels in the image.
fi(i; j): the pixel (i, j) in filtered image fi, the value
range is [0,255].
oi(i ; j): the pixel (i, j) in original image oi, the value
range is [0,255].

(5)

Where,

SD: signal delay of a circuit individual, determined by a
critical path.
αsd: the weight on signal delay in F2.
Pg: power of logic blocks in a circuit, calculated by
summation of all logic block’s power.
αpg: the weight on power of logic blocks in F2.
Cg: complexity of logic blocks in a circuit, calculated
by summation of all logic block’s complexity.
αcg: the weight on complexity of logic blocks in F2.
Pw: power of all wires in a circuit, calculated by
summation of all wire’s power.
αpw: the weight on power of wires in F2.
Cw: complexity of wires in a circuit, calculated by
summation of all wire’s complexity.
αcw: the weight on complexity of wires in F2.

The priority of evaluating values in Eq. (3) is: F1 >
F2. In this experiment, β is set to 0.1*109. The priority
of evaluating values in Eq. (5) is: SD > Pg > Cg > Pw
> Cw. In this experiment, αsd is set to 0.1*106, αpg is
set to 1*103, αcg is set to 0.1*103, αpw is set to 10,
and αcw is set to 1. All α’s and β are empirically
assigned in our experiment.

IV. Experimental results

Table 2 shows the parameters of the evolution of
PSO used in this experiment. Some preliminary
experiments were performed in advance to decide
parameters suitable for our experiment.

The proposed method was implemented in Eclipse
SDK 3.1.1 with jre 1.6.0; and tested on a PC with

Inter(R) Core(TM) 2 CPU at 2.67 GHz and 2.0 GB
RAM.

Table 2. Conditions for evolution

Fig. 5. Elite fitness of PSO (Y-axis) vs. the number
of generations (X-axis)

The image filter is evolved for a 512*512 Lena

image corrupted by 5% salt-and-pepper noise, shown in
Fig. 7.

Fig. 5 shows the elite fitness of PSO with w = 0:9 vs.
the number of generations during the image filter
evolution. The elite fitness is increasing during
evaluation time.

Table 3 shows the results of PSO with different w.
For each PSO, we use results over 10 independent trials.
“max” means the best elite fitness value from 10 trials;
“average” means the average fitness value of 10
individuals; “time” means the average running time
(minutes) of one trial. The larger the fitness is, the better
the image filter is. The less the ratio is, the better the
image filter is.

From the results, we can see that PSO (0.9) produces
better solutions than others, from the point of the best
elite fitness.

An example of chromosome by PSO (0.9) with
fitness -48550809287267 is as follows:

(0, 0, 0)(1, 7, 15)(3, 5, 14)(8, 5, 15)(0, 0, 0)
(0, 0, 0)(0, 0, 0)(11, 12, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0)
(4, 16, 15)(10, 20, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0)

.)),(),((
2

1

2

1
1 ∑∑

−

=

−

=

−=
nr

j

nc

i
jioijifiF

.
2

cwpw

cgpgsd

CwPw

CgPgSDF

αα

ααα

×+×+

×+×+×=

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 233

Fig. 6. The optimized image filter by PSO (0.9)

The graphical representation of this chromosome is

shown in Fig. 6.
As the image is relatively large, we can assume that

the evolved filter is general. The filter is able to remove
the same type of noise also from other images. The
image filter was evolved using Lena image and tested
on other images.

Fig. 7, 8 and 9 show the input images with 5% salt-
and-pepper noise, the Mean difference per pixel
(MDPP) value of these images are 6.42, 6.29 and 6.35,
respectively. Fig. 10, 11 and 12 show the output images
by the image filter in Fig. 6, the MDPP value of these
images are 1.87, 2.37 and 2.51, respectively. Obviously,
this image filter could reduce noise for all cases.

V. Conclusions

This paper proposed the use of PSO (Particle Swarm
Optimization) for mixed constrained image filter design

for noise reduction. The complexity, power and signal
delay both of the CLBs (Configurable Logic Blocks)
and wires are considered. An image filter for removing
noise is experimentally synthesized using PSO, to verify
the validity of our method. By evolution, quality of the
optimized image filter by PSO (0.9) is almost same as
that of GA, but the running time of PSO is 10% shorter
than that of GA.

Acknowledgements

This research was supported by the “Ambient SoC
Global COE Program of Waseda University” of the
Ministry of Education, Culture, Sports, Science and
Technology (MEXT), Japan and partially by the
Intellectual Cluster project of MEXT, Japan and the
Core Research for Evolutional Science and Technology
(CREST) of Japan Science and Technology Agency
(JST).

REFERENCES
[1] T. Higuchi, T. Niwa, T. Tanaka, et al. (1993),
“Evolving hardware with genetic learning: a first step
towards building a Darwin machine,” Proc. the Second
International Conference on Simulated Adaptive
Behaviour, MIT Press, pp. 417-424.
[2] H. de Garis (1993), “Evolvable hardware: Genetic
programming of a Darwin machine,” Proc. International
Conference on Artificial Neural Networks and Genetic
Algorithms, Innsbruck, Austria, Springer.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 234

[3] J. Dumoulin, J. Foster, J. Frenzel, et al. (2000),
“Special Purpose Image Convolution with Evolvable
Hardware,” Real-World Applications of Evolutionary
Computing, vol. 1803 of LNCS, Springer, 2000, pp.
111-125.
[4] L. Sekanina (2002), “Image Filter Design with
Evolvable Hardware,” Applications of Evolutionary
Computing, (the 4th Workshop on Evolutionary
Computation in Image Analysis and Signal Processing,
EvoIASP 2002), vol. 2279 of LNCS, Springer, 2002, pp.
255-266.
[5] Z. Vasicek and L. Sekanina (2007), “Evaluation of a
New Platform for Image Filter Evolution,” Proc. the
Second NASA/ESA Conference on Adaptive Hardware
and Systems, 2007 (AHS 2007), Aug. 2007, pp. 577-
586.
[6] Z. Bao and T. Watanabe (2009), “A Novel Genetic
Algorithm with Cell Crossover for Circuit Design
Optimization,” Proc. IEEE International Symposium on
Circuits and Systems 2009 (ISCAS 2009), Taipei,
Taiwan, May 2009, pp. 2982-2985.
[7] Z. Bao and T. Watanabe (2009), “Evolutionary
Design for Image Filter using Genetic Algorithm,” Proc.
IEEE TENCON 2009, Singapore, Nov. 2009,
(accepted).
[8] J. Kennedy and R. Eberhart (1995), “Particle swarm
optimization,” Proc. IEEE International Conference on
Neural Networks, Vol. 4, 1995, pp. 1942-1948.
[9] Russell C. Eberhart and Yuhui Shi (1998),
“Comparison between genetic algorithms and particle

swarm optimization,” Evolutionary Programming VII,
Lecture Notes in Computer Science, Springer, Volume
1447, 1998, pp. 611 - 616.
[10] Jacob Robinson and Yahya Rahmat-Samii (2004),
“Particle swarm optimization in electromagnetic,” IEEE
Transactions on Antennas and Propagation, Volume 52,
Issue 2, Feb. 2004, pp. 397 - 407.
[11] T. Martinek and L. Sekanina (2005), “An
Evolvable Image Filter: Experimental Evaluation of a
Complete Hardware Implementation in FPGA,”
Evolvable Systems: From Biology to Hardware, vol.
3637 of LNCS, Springer, 2005, pp. 76-85.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 235

