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Abstract: This paper describes evolutionary image filter design for noise reduction using particle swarm optimization 
(PSO), where mixed constraints on the circuit complexity, power and signal delay are optimized. First, the evaluating 
values about correctness, complexity, power and signal delay are introduced to the fitness function. Then PSO 
autonomously synthesizes a filter. To verify the validity of our method, an image filter for noise reduction is 
synthesized. The performance of resultant filter by PSO is similar to that of Genetic Algorithm (GA), but the running 
time of PSO is 10% shorter than that of GA. 
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I. INTRODUCTION 

The idea of evolutionary hardware design was 
introduced at the beginning of 1990s in papers [1, 2], 
and it is usually defined as an approach in which the 
Genetic Algorithm (GA) is utilized to search for a 
suitable configuration of a reconfigurable device in 
order to meet a given specification. 

The image filter design problem is often approached 
by means of evolutionary design techniques. In addition 
to an optimization of filter coefficients (for example, 
[3]), evolutionary approaches are applied to find a 
complete structure of image filters. In [4], Gaussian 
noise filters were evolved using a variant of Cartesian 
Genetic Programming in which target filters were 
composed of simple digital components, such as logic 
gates, adders and comparators. Later, image filters for 
other types of noise and edge detectors were evolved 
using the same technique [5]. But they did not discuss 
any circuit constraints such as complexity, power 
consumption and signal delay, while we proposed mixed 
constrained design optimization using GA for some 
combinational circuits [6, 7]. The proposed method 
could synthesize good circuits about complexity, power 
and signal delay, but it took the large running time for 
GA process. As another optimization method, particle 
swarm optimization (PSO) [8, 9, 10] was proposed and 
evaluated, and it is promising to find a good solution in 
shorter time, compared to GA. 

This paper applies PSO to mixed constrained image 
filter design for noise reduction, shown in Fig. 1. The 
circuit complexity, power and signal delay which are 

caused by both logic gates and wires, are optimized. In 
this design, first, the evaluating value about correctness, 
complexity, power and signal delay are introduced to 
the fitness function. Then PSO autonomously 
synthesizes an image filter which is simpler and has 
better performance than the conventional design. To 
verify the validity of our method, an image filter for 
reducing noise is experimentally synthesized. 

The organization of this paper is as follows: a brief 
overview of PSO is described in the next section. 
Section III describes design optimization for an image 
filter using PSO. Section IV shows the experimental 
results. Finally, Sect. V concludes this paper. 

 

Fig. 1. The overview of our method 
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II. Particle swarm optimization 

Particle swarm optimization (PSO) is an algorithm 
model on swarm intelligence that finds a solution to an 
optimization problem in a search space, shown in Fig. 2. 

In PSO, a particle represents a candidate solution to 
the problem. Each particle is treated as a point in the D-
dimensional problem space. The i-th particle is 
represented as Xi = (xi1, xi2, … , xiD). The best previous 
position (the position giving the best fitness value) of 
the i-th particle is recorded and represented as Pi = (pi1, 
pi2, … , piD). The index of the best particle among all the 
particles in the population is represented by the symbol 
g. The rate of the position change (velocity) for particle 
i is represented as Vi = (vi1, vi2, … , viD). The particle is 
updated according to the following equations: 

 
 

(1) 
 
 

(2) 
 
where,  

0 <= i <= (n-1), 1 <= d <= D. 
n : number of particles in a group. 
D : number of members in a particle. 
t: pointer of iterations (generations). 
w : inertia weight factor. 
c1, c2 : acceleration constant. 
rand(), Rand(): uniform random value in the range [0,1]. 

)(t
idv : velocity of particle i at iteration t, 

max)(min
d

t
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)(t
ix : current position of particle i at iteration t. 

 

Fig. 2. The evolutionary process of PSO 

The inertia weight factor w is employed to control 
the impact of the previous history of velocities on the 
current velocity, thereby influencing the trade-off 
between global (wide-ranging) and local (fine-grained) 
exploration abilities of the “flying points”. A larger 
inertia weight facilitates global exploration (searching 
new areas), while a smaller inertia weight tends to 
facilitate local exploration to free tune the current 
search area. Suitable selection of the inertia weight 
provides a balance between global and local exploration 
abilities and thus requires lesser iterations on average to 
find the optimum. Good values of w are usually slightly 
less than 1 [10]. It could be randomly initialized for 
each particle. Or a high value of w at the beginning of 
the run facilitates global search, while a small w tends to 
localize the search. 

c1 and c2 are constants that say how much the 
particle is directed towards good positions. They 
represent a “cognitive” and a “social” component, 
respectively, in that they affect how much the particle’s 
personal best and the global best (respectively) 
influence its movement. Usually we take c1 = c2 = 2 
[10]. 

 

III. Image filter design using PSO 

PSO is applied to search good solutions to optimize 
the image filter design. 

The target image filter is to provide identical 
functional behavior with less complexity, less power 
and less signal delay. 

1. Image filter 
Every image operator is considered as a digital 

circuit with nine 8-bit inputs and a single 8-bit output, 
which processes gray-scaled (8-bit/pixel) images. 

As shown in Fig. 3, every pixel value of the filtered 
image is calculated using a corresponding pixel and its 
eight neighbors in the processed image [5]. 

2. Reconfigurable processing array for image filter 
Similarly to [11], the reconfigurable image filter is 

implemented as a Virtual Reconfigurable Circuits 
(VRC) (Fig. 4). As a new pixel value is calculated using 
nine pixels, the VRC has got nine 8-bit inputs and a 
single 8-bit output. The VRC consists of two-input 
CLBs (Configurable Logic Blocks in FPGA) placed in a 
4*4 array. Any input of each CLB may be connected to 
either a primary circuit input or the output of a CLB in 
the preceding column. Any CLB can be programmed to 
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implement one of the functions given in Table 1 [5]. All 
these functions operate with 8-bit operands and produce 
8-bit results. Table 1 also gives value of complexity 
(FC), power (FP) and signal delay (SD) for each 
function in a CLB. 

 

Fig. 3. A candidate image filter 
 
In Fig. 4, there are position of inputs and output of 

each logic block. Therefore, we add values of wire 
about complexity, power and signal delay in Table 1. 

3. Genetic encoding 
The chromosome (particle) is a string of integers 

where each three continuous integers constitute a logic 
block. Each triplet in the chromosome encodes the two 
inputs and the function type of a logic block, 
respectively, such as: 

(Input_1, Input_2, Function type). 
A typical chromosome then can be a sequence of 

triplets [6, 7], such as: 
(IN1

1, IN2
1, Ftype

1) … (IN1
i, IN2

i, Ftype
i) … 

Here, IN1
i and IN2

i mean positions of the 
corresponding signal. Ftype

i means Function_type. For 
primary input from I0 to I8, the range of INi is (0 <= INi 
<= 8). For input from output of a logic block CLBm, 
that is, CLB9 to CLB24 in Fig. 4, INi = m. Function in a 
CLB is defined as shown in Table 1. 

 

Fig. 4. A reconfigurable processing array 
 

Table 1. Functions implements in a CLB 

4. Fitness function 
The pixels of corrupted image ci are used as inputs 

of VRC. Pixels of filtered image fi are generated, which 
are compared to the pixels of original image oi. 

The design objective is to minimize the difference 
between the filtered image and the original image. The 
image size is nc*nr pixels, but only the area of (nc-
2)*(nr-2) pixels is considered, because the pixel values 
at the borders are ignored, and thus remain unfiltered. 
The fitness value of a candidate filter is obtained as 
follows: 

(1) the VRC is configured using a candidate 
chromosome 

(2) the created circuit is used to produce pixel values 
in the image fi and 

(3) the fitness value is calculated as 
 

(3) 
 

).()1( 21 FFFitness +××−= β
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Where, F1 and F2 are defined as follows and β is 
the weight on F1. 

 
(4) 

 
Where, 

nc: the number of columns of the pixels in the image. 
nr: the number of rows of the pixels in the image. 
fi(i; j ): the pixel (i, j) in filtered image fi, the value 
range is [0,255]. 
oi(i ; j ): the pixel (i, j) in original image oi, the value 
range is [0,255]. 

 
 

(5) 
 
Where, 

SD: signal delay of a circuit individual, determined by a 
critical path. 
αsd: the weight on signal delay in F2. 
Pg: power of logic blocks in a circuit, calculated by 
summation of all logic block’s power. 
αpg: the weight on power of logic blocks in F2. 
Cg: complexity of logic blocks in a circuit, calculated 
by summation of all logic block’s complexity. 
αcg: the weight on complexity of logic blocks in F2. 
Pw: power of all wires in a circuit, calculated by 
summation of all wire’s power. 
αpw: the weight on power of wires in F2. 
Cw: complexity of wires in a circuit, calculated by 
summation of all wire’s complexity. 
αcw: the weight on complexity of wires in F2. 

The priority of evaluating values in Eq. (3) is: F1 > 
F2. In this experiment, β is set to 0.1*109. The priority 
of evaluating values in Eq. (5) is: SD > Pg > Cg > Pw 
> Cw. In this experiment, αsd is set to 0.1*106, αpg is 
set to 1*103, αcg is set to 0.1*103, αpw is set to 10, 
and αcw is set to 1. All α’s and β are empirically 
assigned in our experiment. 

 

IV. Experimental results 

Table 2 shows the parameters of the evolution of 
PSO used in this experiment. Some preliminary 
experiments were performed in advance to decide 
parameters suitable for our experiment. 

The proposed method was implemented in Eclipse 
SDK 3.1.1 with jre 1.6.0; and tested on a PC with 

Inter(R) Core(TM) 2 CPU at 2.67 GHz and 2.0 GB 
RAM. 

Table 2. Conditions for evolution 

 

Fig. 5. Elite fitness of PSO (Y-axis) vs. the number 
of generations (X-axis) 

 
The image filter is evolved for a 512*512 Lena 

image corrupted by 5% salt-and-pepper noise, shown in 
Fig. 7. 

Fig. 5 shows the elite fitness of PSO with w = 0:9 vs. 
the number of generations during the image filter 
evolution. The elite fitness is increasing during 
evaluation time. 

Table 3 shows the results of PSO with different w. 
For each PSO, we use results over 10 independent trials. 
“max” means the best elite fitness value from 10 trials; 
“average” means the average fitness value of 10 
individuals; “time” means the average running time 
(minutes) of one trial. The larger the fitness is, the better 
the image filter is. The less the ratio is, the better the 
image filter is. 

From the results, we can see that PSO (0.9) produces 
better solutions than others, from the point of the best 
elite fitness. 

An example of chromosome by PSO (0.9) with 
fitness -48550809287267 is as follows: 

(0, 0, 0)(1, 7, 15)(3, 5, 14)(8, 5, 15)(0, 0, 0) 
(0, 0, 0)(0, 0, 0)(11, 12, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0) 
(4, 16, 15)(10, 20, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0) 
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Fig. 6. The optimized image filter by PSO (0.9) 
 
The graphical representation of this chromosome is 

shown in Fig. 6. 
As the image is relatively large, we can assume that 

the evolved filter is general. The filter is able to remove 
the same type of noise also from other images. The 
image filter was evolved using Lena image and tested 
on other images. 

Fig. 7, 8 and 9 show the input images with 5% salt-
and-pepper noise, the Mean difference per pixel 
(MDPP) value of these images are 6.42, 6.29 and 6.35, 
respectively. Fig. 10, 11 and 12 show the output images 
by the image filter in Fig. 6, the MDPP value of these 
images are 1.87, 2.37 and 2.51, respectively. Obviously, 
this image filter could reduce noise for all cases. 

 

V. Conclusions 

This paper proposed the use of PSO (Particle Swarm 
Optimization) for mixed constrained image filter design 

for noise reduction. The complexity, power and signal 
delay both of the CLBs (Configurable Logic Blocks) 
and wires are considered. An image filter for removing 
noise is experimentally synthesized using PSO, to verify 
the validity of our method. By evolution, quality of the 
optimized image filter by PSO (0.9) is almost same as 
that of GA, but the running time of PSO is 10% shorter 
than that of GA. 
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