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Classical theory of the AKP. In case of γ = 1 the
shapes of bounded trajectories in the position space
are all elliptical and hence each motion is regular. As
the value of γ decreases from unity the motion changes
to the quasi-regular motion. When γ is smaller than
γc ≡ 8/9, the motion becomes chaotic and compli-
cated. Because the AKP has such a controlling pa-
rameter γ of the degree of chaos in the classical regime
it serves as a vital model to examine how the chaos in
the classical regime governs the behavior of the system
in the quantum regime.

Quantum theory of the AKP. We recapitulate the
scheme devised by Wintgen et al. It is an all order cal-
culation and in this point surpasses the perturbation
method. The Schrödinger equation is

[−△ +(1 − γ)(∂2/∂z2) − 2/r
]
ψ(r⃗) = Eψ(r⃗). (4)

For γ ̸= 1 eq. (4) is not separable and we switch to a
numerical way. For the bases, Sturumian functions in
a spherical coordinates are defined as

⟨r⃗|nℓm⟩ = 1
rϕ

ℓ
n(r;λ)Yℓm(θ, φ), (5)

ϕℓn(r;λ) =
√

n!
(2ℓ+n+1)!e

−λr
2 (λr)ℓ+1L2ℓ+1

n (λr).

Here n, ℓ, m are the radial, azimuthal, magnetic quan-
tum numbers respectively and they are related to the
principle quantum number np as np = n+ ℓ+ 1. The
Yℓm(θ, φ) are the spherical harmonics, Lαn(x) are the
generalized Laguerre functions which satisfy a differ-
ential equation xL′′ + (α+ 1 − x)L′ + nL = 0. When
λ = 2/np, Sturumian functions are wave functions of
hydrogen atom.

Using these bases the Schrödinger eq. (4) can be
written as a matrix equation[6]:

[
−λ(

←→△ ) + (1 − γ)λ(
←−−−→
∂2/∂z2) − 2(

←→
1/r)

]
ψ⃗

= (E/λ)(
←→
Id )ψ⃗.

(6)

Here (
←→
1/r) = (⟨n′ℓ′m′|1/r|nℓm⟩) =(δn′nδℓ′ℓδm′m) is

unit matrix. Other matrices have off diagonal elements
which equal zero except for ℓ′ = ℓ or ℓ′ = ℓ + 2; for
instance elements of (

←→
Id ) are

⟨n′ℓ′m′|Id|nℓm⟩ = (1/λ)δℓ′ℓδm′m[2(n+ ℓ+ 1)δn′n

−
√

(n+ 1)(2ℓ+ n+ 2)δn′n+1]. (7)

Because of a rotational symmetry about z axis the ele-
ments of matrix included in eq. (6) are all proportional
to δm′m. By these properties eq. (6) is transformed to
standard eigenvalue problem as

←→
Mψ⃗ = (2/λ)ψ⃗,
←→
M = −(

←→△ ) + (1 − γ)(
←−−−→
∂2/∂z2) + ϵ(

←→
Id )

(8)

and ϵ = −E/λ2 < 0. Here the matrix
←→
M is an N ×N

symmetric matrix. It is block diagonal in the sense
that ℓ′ = ℓ+ 2 or ℓ and m′ = m. Whole energy levels

are obtained by putting together the levels which cal-
culated from each sector. Hereafter we consider only
the ℓ even and m = 0 sector. Then if we want eigen-
values for the states with the principle quantum num-
ber np up to Np with this restriction the matrix size
N must be (Np + 1)2/4. We should add that

←→
M is

banded and sparse. By solving (8) for the eigenval-
ues 2/λis (i = 1, · · · , N) the energy levels are in turn
determined as Ei = −ϵλ2

i . Supposing that we choose
another value for the parameter ϵ of the matrix

←→
M ,

the eigenvalues 2/λis will be accordingly changed and
the physical energies will be kept invariant. However
in practice the number of available bases is limited; we
cannot help truncating the number of bases. Then the
above ideal scaling becomes only approximate.

3 Results (The most suitable choice of ϵ)

As the truncation condition we adopt Np = 177.
The matrix size N of our sector is 7921. This is the
largest size among all sectors. We present in Fig. 1
the results of diagonalizing eq. (8) for energy levels
at various values of ϵ. The parameter γ is decreased
through 18 panels from 0.9 down to 0.05. Instead of
the energy levels Eis (i = 1 for ground state) we depict

fi = −1/(4
√
γEi), i = 1, 2, · · · , 7921 (9)

which are appropriately stretched so that fi = i and
the average spacing δfi ≡ fi+1 − fi should be theo-
retically unity 1. The curves of fis are expected to
be all parallel and their spacings are expected to be
unity. However, at a glance one finds that the curves
are all simultaneously deformed. Especially the defor-
mation from the constant line is remarkable for small
γ (extremely large spacing) and for small |ϵ| (anoma-
lous accumulation of fi curves). This dependence is
not physical but an error which should be considered
as the weak point of the matrix method. The remedy
for this problem is our task discussed below.

Accordingly we have to select the part of calculated
energy levels that we can trust. We propose a pre-
scription to select ‘good results’ for each ϵ based on
two criteria.
Criterion A: The deviation from the theoretical for-
mula (10) must be small. This concerns with the
global property of levels. To check this, the whole
fi(ϵ)s are divided into ensembles, Fn = {fi(ϵ)|200(n−
1) < i ≤ 200n}, (n = 1, · · · , 39), and the average
of spacings ⟨δfi⟩n is calculated for each ensemble Fn
varying ϵ with inclement ∆ϵ = 0.01. In Fig. 1 we show
the region on the f − ϵ plane where the deviation of
⟨δfi⟩n from unity is 0.05 or less. It is connected and
convex and we depict the boundary by a solid curve.
Criterion B: The quantum levels must repel each other
when the anisotropy is large (γ < 8/9). This concerns

1The cumulative mean density of levels of our sector should
obey Thomas-Fermi formula[4],

N(E) = −1/(4
√

E). (10)
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with the local property of levels. Recall that in the
region with γ < 8/9 the system is classically chaotic
and hence the quantum levels must show repulsion.
Here the NNSD is Wigner-like and the mean squared
deviation (MSD) of level spacings is 4/π − 1 ≈ 0.273
for the ideal Wigner distribution. On the other hand
for γ > 8/9 the distribution is expected to be Pois-
son and the MSD is unity. Based on this theoretical
expectation we set a condition that MSD must be 0.3
or less with a tolerance of 10% in the regions with
γ < 8/9. We indicate in Fig. 1 by vertical lines the re-
gions where this condition is met. For γ = 0.9(> 8/9)
(the first panel) there is naturally no region of repul-
sion. For other panels with γ < 8/9 the B allowed
region remarkably agrees with the A allowed region.
Fig. 1 succinctly shows this and strongly guarantees
our prescription.

We list a few interesting observations in items.
(i) Np is restricted by the computational ability.

Thus one has to choose the best value of ϵ (ϵmax) which
gives the largest number of reliable levels. This ϵmax
can be read off from the crest of the convex curve in
each panel of Fig.1. Now let us turn our eyes to the
dashed curve. This connects the minimum points of
fi(ϵ) curves and hence the fi(ϵ)s below this curve at
given ϵ are maximally compressed. Now if one follows
this line downwards until one reaches the region al-
lowed by the criterion A, remarkably one always meets
the crest of the boundary curve. This is natural be-
cause at this time the compression reaches for the first
time to the extent ⟨δfi⟩n ≃ 1 and this implies the crest,
at which the maximum number of fi(ϵ)s are contained
below the curve.

(ii) Fig. 2 shows the relationship between γ and
ϵmax. Data points clearly follow a linear line well de-
scribed by ϵmax ≃ (−1/4)γ.

(iii) Fig. 3 shows the ratio (Reff ) of the number of
levels which satisfy the criteria at ϵ = ϵmax to number
of whole levels N (=7921) is plotted as a function of
γ. This relation is well described by Reff ≃ √

γ with
about 1% error for coefficient. From this we can esti-
mate that the efficiency of determining reliable levels
in the realistic cases of silicon or germanium is about
30% and 15% respectively.

These observations do not change even if we analyze
smaller set of levels with Np = 75(N = 1444) instead
of Np = 177(7921). These regularities seem reflecting
the effect of truncating the set of bases.

4 Conclusions

In this article we have recapitulated the vital ma-
trix method[4]. The relations between the calculated
energy levels and the scaling parameter ϵ is elucidated
in Fig. 1 and a prescription how to select suitable ϵ re-
gions is presented. The best ϵ (ϵmax) and the ratio of
reliable levels (Reff ) are estimated for various γ and
it is observed that they follow simple rules (Fig. 2, 3).
The results in this article guarantee the reliability of
the matrix method and provide us with a prescription

0 0.2 0.4 0.6 0.8 1

0

−0.05

−0.1

−0.15

−0.2

−0.25

ε m
ax

γ

Fig. 2: The ϵmax vs. γ.
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Fig. 3: Ratio of reliable levels vs. γ.

to increase the efficiency of the calculation.
Finally we comment on the subjects we are work-

ing with. Some random matrix model for an extended
Gaussian orthogonal ensembles was constructed[7] and
it was shown that the AKP may be treated within it.
We are extensively studying this issue and will present
elsewhere the relationship between γ values and the
matrix-model temperatures. Armed by our prescrip-
tion we will furthermore examine the multifractality
of wave functions of the AKP.
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