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Abstract: One of the most important issues in developing entertainment robot is human-robot interaction, in which the
robot is expected to learn new behaviors specified by the user. In this paper we present an imitation-based mechanism
to support robot learning and use evolutionary computing to learn new behavior sequences. We also propose several
advanced techniques at the task level and the computational level to evolve complex sequences. To evaluate our
approach, we use it to evolve different behaviors for a humanoid robot. The results show the promise of our approach.
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I. INTRODUCTION

In recent years, entertainment robots have been
considered the main trend of the next-generation
electronic toys, and this type of robots has become an
important application of intelligent autonomous robot
[1][2]. Building fully autonomous artificial creatures
with human-like intelligence is a long-term goal and it
has not yet achieved at the present stage. However, with
current technologies in computing and electronics, and
new knowledge in ethology, neuroscience and cognition,
it is now possible to create embodied prototypes of
artificial living toys acting in this physical world.

One of the most important issues in developing
entertainment robot is human-robot interaction, in
which the robot is expected to learn new behaviors
specified by the user. Entertainment robots are service
robots to live with people, therefore we need to
furthermore apply knowledge of biology and ethology
to derive design principles for interaction and learning.
Imitation is a powerful mechanism in social animals for
learning and delivering new knowledge [3][4], and
some researchers have proposed to endow a robot with
such social-cognitive skills [5][6][7]. In this work, we
choose to implement such a mechanism to provide a
special kind of human-robot interaction.

In this paper we present an evolution-based
approach to realize the imitation-based learning. In our
work, the robot is shown how to perform the desired
behavior first, and during the period of human
demonstration, the behavior sequences are recorded and
analyzed. Then the Genetic Algorithm is employed to
evolve the behavior sequences: to determine how to
rotate different motors on the robot’s body parts to
produce the same behaviors. To evaluate our approach,
we use it to evolve different behaviors for a humanoid
robot. As for complex behavior sequences, we propose

some advanced techniques for performance
enhancement, including the division of the overall
behavior at the task level, and the exploitation of priori
information and exploration of search space with an
adaptive mutation at the computational level. The
preliminary results and analyses show that our approach
can successfully and effectively evolve behavior
sequences for the robot.

II. EVOLVING BEHAVIOR SEQUENCES

1. System Overview

As mentioned above, this work aims to establish an
imitation-based learning framework to evolve behavior
sequences for a humanoid robot. Fig. 1 illustrates such a
framework that mainly includes two parts for active
learning and passive learning, respectively. The active
part involves a gesture recognition procedure, which is
to capture and record images of the demonstrator, and
then extract the curve for further interpretation. If a
match is found, the corresponding behavior module is
retrieved and activated from the behavior library. The
control code for generating the sequence is then sent to
the robot. The library can be pre-constructed to include
some behavior primitives as basic components, and is
gradually expanded by the user during the human-robot
interaction procedure.

The passive part is to build a new behavior that does
not exist in the behavior library. Here the new behavior
means a completely new sequence (if no sequences in
the library matched any part of the newly demonstrated
one) or a sub-sequence obtained from the demonstrated
sequence (after the partially matched parts have been
removed). Because this work focuses on the passive part
of the demonstration-based learning framework,
therefore we will concentrate on describing the
development of our learning mechanism, in which a
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modified genetic algorithm is employed to evolve
behavior sequences.

Fig. 1. The system overview.

2. Evolving Behavior Sequences

The first important step in evolutionary computation
is to choose a proper representation for the individual.
The goal here is to drive the motors of a humanoid robot
to produce the same behavior sequences as that of the
human demonstrator. We thus use a direct encoding
scheme that takes the motors to be considered and their
corresponding activities as gene pairs to constitute a
chromosome. That is, a chromosome is a fixed length
string that records a sequence of motor activities along
time domain. The odd genes indicate the motor
identifiers and the even genes are the motor rotating
angles. To provide the robot a reasonable number of
time steps to produce the target behavior sequence, the
length of the chromosome is defined as the ratio of the
estimated displacement of the behavior trajectory to the
minimal motor speed.

As the behavior shown by the demonstrator may
involve different body parts (for example, both hands in
this work), the motors drive these parts can thus rotate
independently at the same time. In such situations, the
behavior trajectories of different parts can be built
separately, in which only the motors driving the same
part are used in the corresponding chromosome.
However, in the above situations the synchronization
problem between different body parts needs to be
considered. For example, in Fig. 2, the demonstrator
moved his right hand but halted the left hand (the x, y, z

coordinates remain the same) in two short periods T1

and T2. Therefore, when the behavior sequences for the
two hands are evolved separately, some motor genes
with zero rotating angles (i.e., halting the motors) need
to be inserted to the solution for the left hand to keep it
synchronized with the right hand.

From the computational point of view, using motor
genes with zero rotating angles will generate some

redundant gene pairs and introduce extra difficulty in
the evolutionary process, so we employ an alternative
way to deal with the synchronization problem instead.
In our method, sequences for different body parts are
aligned and the halting periods are used to divide these
sequences. For example, in Fig. 2 the two sequences for
the right and the left hands are divided into four
independent sub-sequences. Then the solutions are
evolved separately for each sub-sequence and combined
as the overall solution.

Fig. 2. An example of behavior sequence in which the upper
(lower) part shows the x, y, and z coordinates of a tracking
mark on the demonstrator’s right (left) hand.

After the genetic representation has been defined,
the next step is to evaluate individuals to determine their
fitness for the creation of a new population. Here, the
goal is to measure how the behavior sequence produced
by the individual is close to the original sequence shown
by the demonstrator. It is to accumulate the deviations
derived from the motion effect of the motor activities
described in a chromosome. If the target and actual
positions for a tracking mark at time step t are p(t) and
p′(t), respectively, the closeness of the target and actual
sequences can be measured as:

and

c(t) = 1 if d(t)＜dthread ; c(t) = 0 otherwise

In the above equation, T is the number of time steps of
the robot’s performing the task; d(t) means the distance
between the target and actual positions at time t; and c(t)
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indicates whether the actual sequence can approximate
the target sequence at time t.

As the closeness measures the position difference of
two sequences at discrete time points, it is thus possible
to obtain two sequences with very similar closeness but
have different motion trajectories. To distinguish among
sequences precisely, a penalty term is introduced to
estimate the differences of motion trajectories of the
target and actual sequences as:

in which v is the velocity of the tracking mark (i.e., vp =
|p(t)－p(t+1)| and vp′= |p′(t)－p′(t+1)|). With the above
two kinds of measurement, we then define the fitness
function as their weighted sum:

penaltyclosenessfitness  

Based on the above fitness function, the individuals
can be evaluated and their performance can be
determined. Then a certain selection scheme is used to
choose parent individuals. In our implementation, the
tournament selection scheme is employed to choose
parents. Then, three genetic operators, reproduction,
crossover, and mutation, are applied to create a new
population for the next generation. As our
representation includes two types of data (motor
identifier and rotating angle), two kinds of crossover are
used for the recombination of individuals: uniform
crossover for motor genes and arithmetical crossover for
rotating angles.

3 Evolving complex behavior sequences

After describing how an evolutionary framework is
developed to learn new behavior sequences, this section
presents how it is furthermore extended to evolve
complex sequences from different points of view. Here
the complex sequence means a sequence that needs
specific skills to achieve; it is not necessarily a long
sequence. The first way to evolve complex sequences is
to reduce the complexity from the task level. That is, to
take a divide-and-conquer technique to decompose a
complex behavior sequence into several sub-sequences,
evolve solutions for the sub-sequences and then
combine them together for the complete sequence.
Though this method provides a direct way to reduce
task complexity by the division of original sequence,
however, its corresponding disadvantages need to be
seriously considered. For example, it is tedious for the
user to deal with the large amount of tiny subsequences.

Also it becomes difficult to attach suitable semantic
interpretations for the tiny sequences and this is
important to many service robot applications.

The other direction to encounter the complexity
problem is to take a computational perspective to
enhance the searching performance. Two methods have
been developed in this work. The first method involves
the exploitation of the priori knowledge in searching
solution space. It is to retrieve some behaviors
sequences, which are similar to but different from the
target behavior, from the behavior library to the initial
population. It is expected that with the guidance of these
relatively good solutions, the evolutionary search can
become more efficient and the target behavior can thus
be obtained.

The other method is to develop an adaptive mutation
scheme to maintain population diversity during the
evolutionary process. It is to calculate the standard
deviation of the fitness of all individuals at each
generation (i.e., sdi), and to record the maximum of the
standard deviation from the first generation (i.e., max-

sd-so-far). Then the ratio of current standard deviation
to the maximum value is used to determine the mutation
rate, which is the default mutation rate multiplies a
factor of (1－ sdi/max-sd-so-far). In this way, the
population is guaranteed to include certain new
individuals to main its diversity.

III. EXPERIMENT RESULTS

To assess the proposed methods, we used them to
evolve different complex behavior sequences. In this
work, we developed a simulator to generate the
behavior sequences to be achieved and record the
coordinates accordingly, to save the effort of human
demonstration. In addition, to fit the hardware
restrictions of the real robot used in this work, three
motors, on the shoulder (pitching), elbow (rolling), and
twist (rolling) joints, were used to drive each hand. Here,
each motor was allowed to rotate within the range of
+90 to –90 degrees. The behaviors evolved from
simulation were transferred to a real humanoid robot for
verification.

In the experiments, we pre-compiled three complex
behavior sequences, as illustrated in Fig. 3 (due to the
space limitation, only one behavior is shown), to
evaluate the methods mentioned in section II.3 in
evolving complex sequences. We also conducted a set of
experiments that took the original framework to evolve
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the same tasks for performance comparison. The results
without advanced techniques are shown in Fig. 4, in
which no successful runs can be obtained.

Fig. 3. One of the target behaviors.

Fig. 4. The results for evolving behaviors with different
population size (The y-axis means fitness value, and the
indices 1, 2, and 3 in the x-axis represent experiments for three
different behaviors, respectively).

1. Task decomposition

As described in section II.3, we can adopt the
divide-and-conquer method to reduce task complexity,
evolve partial solutions for subsequences, and then
combine the partial solutions to obtain the final solution.
To evaluate the performance of task decomposition, we
divided the each of the tasks into two behavior
subsequences, and then four subsequences (with
approximately the same length), to examine the
corresponding effect. In the experiments, ten
independent runs were conducted for each of the
divided subsequences. The population size is 1000, the
crossover rate is 0.7 and the mutation is 0.003.

Fig. 5 lists the results of dividing the original tasks
into different number of subsequences. As can be seen,
initially all of the three complex behavior sequences
cannot be evolved correctly. After each of the sequences
was divided into two subsequences, the first behavior
can be evolved successfully four times in the ten runs,
and the third behavior, one time. We then furthermore
divided them again into four subsequences and repeated
the evolutionary runs again. As can be expected, the
target tasks became more achievable after the division
was performed again. But it should be noted that more

and more tedious experimental runs will be needed if
the task are divided iteratively. Also it will become
difficult to attach semantic labels for the tiny sub-
behaviors to be reused in other applications.

Fig. 5. The number of successful runs in evolving complex
sequences by task decomposition.

2. Advanced evolutionary techniques

In addition to reducing complexity from the task
level to evolve complex behaviors, we also investigate
whether the priori information of a specific problem can
be used to derive solutions in a more efficient manner.
Here, the priori information means the similar behavior
sequences already recorded previously in the behavior
library. In this work, ten simple behaviors are pre-
defined as primitive robot behaviors. To exploit the
information already obtained, we measured the
similarity between the target behavior and the ones
recorded in the library, and then chose and inserted three
most similar behaviors to the initial population in the
evolutionary process.

Ten independent runs have been conducted for each
of the tree tasks. In each run, a population of 1000
individuals was used, in which three of them were taken
from the library as described above. Fig. 6(a) presents
the results. It shows that in average the experiments
with priori information have better performance than
those without using information. However, we also
noticed that with the guidance of priori information, the
runs converged more quickly than those without using
information. This feature caused evolutionary runs to
lose population diversity and became premature.
Consequently, we cannot obtain successful solutions.

To prevent the above premature situation, we have
developed an operator of adaptive mutation to maintain
population diversity. It is to introduce randomness of the
population based on the standard deviation of the fitness
of all individuals. In this set of experiments, the
mutation rate of each generation was determined by the
criteria described in section II.3. To observe the effect of
adaptive mutation alone, we conducted ten runs for each
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of the three complex behaviors in which all other
parameters were the same as the abovementioned
methods. Fig. 6(b) summarizes the results. As can be
seen, better results can be obtained, though there is no
successful run obtained.

(a) (b)

Fig. 6. The results of using priori information (a) and adaptive
mutation (b) to evolve robot behaviors.

From the above two sets of experiments, it can be
seen that using priori information or adaptive mutation
can both improve search performance and evolve better
solutions, but no perfect solutions can be obtained from
all of the runs. Therefore, following the above
experiments, we combine both strategies to conduct
evolutionary runs (with the same parameter settings as
before) in evolving complex behaviors. Fig. 7
summarizes the results, in which the numbers of
successful runs for the three behaviors are now 5, 2, and
3, respectively. Fig. 8 shows how the fitness curves
converged during the typical runs (for the behavior
illustrated in Fig. 3). As can be seen clearly, by
integrating two useful strategies to exploit all their
advantages, perfect solutions can be evolved. It shows
the success of our approach.

Fig. 7. The results of using both priori information and
adaptive mutation.

IV. CONCLUSIONS

In this paper, we have indicated the importance of
developing entertainment robots as an intelligent robot
application. To realize the development of adaptive
entertainment robot, an imitation-based learning

mechanism has been constructed with which the user
can teach the robot how to perform the expected
behavior through demonstration. Here we use an
evolutionary approach to support the imitation-based
robot learning, and implement several advanced
techniques at the task level and the computational level
to evolve complex behavior sequences. The
experimental results show that by the exploitation of
priori information and the exploration of solution space
with an adaptive mutation, the complex behavior
sequences can be evolved successfully.

Based on the presented work, we are currently
extending our approach to evolve robot behaviors with
coordination of both hands and legs. Since this type of
behaviors involves the balance of robot body, it
becomes more difficult to achieve. We are investigating
more advanced computational techniques to deal with
the relevant problems. In addition, we plan to integrate
an efficient vision system into the robot to acquire and
analyze the demonstrator’s behavior sequences in real
time.

Fig. 8. The fitness curves of the typical run in evolving
behaviors by both priori information and adaptive mutation.
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