
Autonomous Walking with use of Quadruped Virtual Robot

 Kouki MIYOSHI, Norihiro ABE, Yoshihiro TABUCHI

Kyusyu Institute of Technology

680-4 Kawazu, iizuka, Fukuoka 820-8502, Japan

Email:miyosi@sein.mse.kyutech.ac.jp

Hirokazu TAKI

Wakayama University

930 Sakaedani, Wakayama-shi

Wakayama 680-8510, Japan

Email: taki@sys.wakayama-u.ac.jp

Shoujie He

VuCOMP

Richardson, Texas, USA

Email: hesj@computer.org

Abstract: In the development of a robot, it needs much cost and time to verify a robot’s motion with use of real

machinery. Especially it is difficult to validate a robot’s behavior at the unsafe place. Then developers have paid

attention to virtual debugging system. It makes verification of a machine’s behavior makes more efficient and easy by
using a program validated in VR space.

 In this research, we have a virtual robot walk on a road autonomously with the images which are captured by

cameras on the virtual robot.

Keywords: VR, Virtual Robots, Virtual Space

1. INTRODUCTION

In recent years, many robots have been developed. It

is easily to expect that a robot becomes a member of

the general public in the near future. But the

development of robots takes much cost and time. One of

the reasons is to validate with real machinery in real

space. If a real robot should be damaged, it will force us

to pay much time and expense for fixing the robot. This
will increase necessary expense and the length of a

period for robot development, so no one deploys any

robots in dangerous environment for fear of damage

owing to violent fall or collision.

Then a virtual debugging system has gotten attention
[1][2][3]. Developers are allowed to design the same

machinery as the real one in VR space, and to verify the

robot motion by using it. It saves speed of developments

by verifying whether the virtual robot works well or not

in the virtual debugging system. Additionally,

developers enable to create various testing environments

and test the robot’s behavior on these environments.

In this research, we make a virtual four legged robot

built in virtual space based on physics, and have it move

autonomously. By analyzing images captured with two

cameras installed on the four legged robot, we have it

track a line and walk on a road by using the algorithm

that tracks a line.

2. Construction of Virtual Reality Space

In the simulation, it is necessary to construct the

virtual reality space based on a physical rule because of

making virtual environment close to real one as far as

possible [4]. So we use the rigid physics calculation

library, Vortex (developed by CMLabs Simulations, Inc

[5][6].) to build the virtual reality space. The Vortex
provides the function that creates fundamental objects

like plane, box, corn, sphere, and cylinder. We enable to

use a constant restraint between objects as a joint. We

are able to combine different basic objects to create a

composite object. Combination of composite objects

and joints enables to express a complex object like robot

and car.

3. Expression of Virtual Robot

In this research, servomotors of virtual quadruped

robot are expressed with a hinge joint between solids

two boxes and two rectangular as shown in Fig.1 [7].

 (a) Hinge joint (b) Servomotor

Fig.1. A Virtual Servomotor

A virtual quadruped robot consists of 13 composite

objects and 12 hinges. Each part of body, shoulders,

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 986

upper legs, and lower legs is composed of boxes and

cylinders. These parts are linked with a hinge joint.

Fig.2 shows an appearance of robot.

Fig.2. Quadruped Robot

4. Autonomous Walk

4.1. Image Buffer

In this research, images of the environment that

robot sees are used to control the robot, but the position

of the image buffer is not provided with Vortex but with

Open GL. On the other hand, both Open GL and Vortex

manage any rigid object with the transformational

matrix, then the robot can acquire its transformational

matrix from the result of image processing and infer it

location based on the images observed with two virtual

cameras.

4.2. Virtual Gradient Sensor

Images captured with cameras will decline (shown
as Fig.3) because the four-legged robot declines when it

goes ahead. So in addition to cameras, a virtual gradient

sensor is installed on the robot. The images are rotated

by the angle detected with a gradient sensor to make

images processing easy.

Fig.3. Images from two virtual cameras

A virtual gradient sensor calculates the gradient

angle of camera. The gradient θ is represented as the

expression (1) by using two coordinates ()11 , yx and

()22 , yx shown in fig.4.

() () 













−+−

−
= −

2

21

2

21

211sin
yyxx

xx
θ (1)

Fig.4. The Virtual Gradient Sensor

4.3. Autonomous walk along a line

Before correcting an image captured with a virtual

camera, the image is binaried and linearly expanded.

The binalization makes tracking a line easier and the

linear expansion prevents a line from being segmented

when the image is rotated.

There may be several lines except for the line the

robot should trace in the captured image as shown in

fig.5, when the robot walk along the line. After rotating

images, system searches a line from a point close to the

robot in the image to find the line the robot should

follow.

Fig.5. Extracting Line the Robot should Follow

To make a walking command, the left image is used

as a base image. The first step is to find a red pixel that

is a part of red line from the left image. The second step

is to find the rod pixel that has same y-coordinate value

as one of the red point found in left image from the right

image as shown in Fig.6. This process is run over until a

red point is found in the both images. The average

number of x-coordinate of the right and the left images

decides that the robot is on line or deviates from side to

side.

If the robot is on the line, the average x-coordinate is

equal to the half size of the image width. If the robot

deviates to the right side, the average x-coordinate will

be less than the half size of the image width. On the

other hand, in case the robot deviates to the left side, the

x-coordinate will be more than the half size of the image

width (shown as Fig.6). Even if a robot is going straight,

as it will shake from side to side, the x-coordinate dose

not precisely coincide to the half size of the image width.

So the decision of whether the robot is on the line or not

is relaxed. If a robot is judged to be on the left side, it

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 987

will be given a command to move to the right direction,

and vice versa.

Fig.6. The Decision of a Walk Order

The robot must turnaround only when a draft

exceeds a threshold value, because four legged robot

always slips during a walk to some extent from side to

side. If the line is found in just one of images, say right

one, it must turn to the left because it is on the right of

the line to track.

4.4. Autonomous walk on a road

When the robot walks on a road, system calculates

an imaginary center line passing through the center

between two white lines (shown as Fig.7) white lines

which are the edges of the road. The robot follows the
line with the algorithm shown above.

Fig.7.Plot the Imaginary Center Line

Finding a branch is necessary to correspond to a

road that has branches. A white line on a road on which

there is a branch is disconnected, for example, as shown

in Fig.8 (a), in which there is a corner toward left, at the

two points marked with arrows a white line is

disconnected. If there is no branch at all, a white line

remains as it is as shown in Fig 8 (b).

Fig.8. Branch Point on White Line

Detection of a branch point is done based on the fact me

ntioned above. Which direction a branching road extend

s to is determined by finding portions where a white line

 is disconnected. As the robot is always swaying toward

 right or left while walking, disconnection on a white li

ne is not always observable from the robot, that is, even

if it has been observed at the previous frame, it may not

be observable at the current frame but it may be observe

d again at the next frame. This will cause the robot to mi

sunderstand there are two disconnection on the same wh

ite line.

It is necessary to give a map to a robot in advance

because it must determine the route leading it to the goal

from the start. The map exploited by a robot is a

topological one without distance information. This map

allows a robot to infer its current location with respect

to branching points. Assuming that distance between

two successive branches on a white line is enough long,

it is considered that such intermittent observation of

disconnection means that the robot staying in a branch

observes the same branch repeatedly. Consequently, if a

robot encounters the sequence as shown in Fig.9, it can

recognize that there is one branch in the interval B and

D respectively, where 1 corresponds to the discovery of

one disconnection.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 988

Fig.9 Determine Whether the Robot is at Branch Point

As s robot is subject to non holonomic constraints, it

does neither move sideways nor turn without translation.

This means that a robot must be given a reparatory of

trajectories in the same way as a car-like non holonomic

robot. At present, a robot is not given such a reparatory

but it must generate a trajectory to turn a corner being

close at hand using a distance measurement with a

stereo vision. There are, however, the cases it goes over

a white line at a corner if it curves to near right angle.
To avoid this problem, a bird’s eye view of the region

observed by the robot using a stereo vision is necessary

to guide the robot behavior.

First, correspondence between a right and left image

is calculated for each edge of white lines based on an

edge based stereo vision. Next, correlation based on the

correspondence between pixels successfully

corresponded is calculated, then based on the result

three dimensional coordinates of points are obtained. A

robot judges where to start rotation to turn a corner

being close at hand.

(a) Edge Images

(b) Gray Scale Images

Fig.10 Corresponding Point of Stereo Vision

5. Conclusions and Future Work

This research’s aim is to make a virtual robot

autonomously walk in the Virtual space and we

successfully implement simulation. Now the robot is

able to walk autonomously along without a branch. In

the case that the road has diverging, system finds the

branch point and detects how many branch points the

robot passed.

Now, except for up hills or down hills, the system

successfully simulates the behavior of a robot on a flat

plane with a constant homogeneous friction coefficient.

Next we would like to simulate the behavior on rolled

ground with variable friction coefficients. To have a

robot walk autonomously along a road with several

forks, the robot must locate itself refereeing to the map

information calculated using given start and goal points

to the robot. The robot must recalculate the route, if the

robot judges it impossible to go ahead in motion for the

reason that the road is occupied with obstacles or the

road is too narrow for the robot to go through.

6. Acknowledgment

We greatly appreciate the aid of the Grant-in-Aid for

Scientific Research (S) and (A).

7. Reference

[1] Yi PAN, Norihiro Abe, AND Kazuaki Tanaka

(2003): The Virtual Debugging System for Embedded

Software Development, SCI2003, 78-84.

[2] Yi Pan, Norihiro ABE, Kazuaki Tanaka (2003): The

Virtual Debugging System for Embedded Software

Development, VRAI2003.

[3] Yi Pan, Norihiro Abe, Kazuaki Tanaka, Hirokazu

Taki (2004): The Virtual Debugging System for

Developing Embedded Software Using Virtual

Machinery. Embedded and Ubiquitous Computing,

International Conference (EUC 2004), Aizu, Japan, 85-

95.

[4] Norihiro Abe, Yoshinori Takamura, Kazuaki Tanaka,

Hirokazu Taki (2003): Construction Of Physics

Simulation Environment for Education Using Vortex, In

proceedings of the SCI2003, 301- 307.

[5] VORTEX Developer Guide, CMLabs Simulation,

Inc, 2002

[6] VORTEX Viewer Developer Guide, CMLabs

Simulation, Inc, 2001

[7] Toshiaki Oomori, Norihiro Abe, Kazuaki Tanaka,

Hirokazu TAKI, Shoujie HE (2005): Concurrent

development of Virtual Robots and Real Robots Based

on Physical Low, IMEKO / IFAC / IFIP Workshop on

Advanced Robot Systems and Virtual Reality.

ISMCR2005.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 989

