
 

Ultrasonic Sensor Based Navigation for a Mobile Robot Using Fuzzy Logic  
 

 Nguyen Huu Cong* and Sung-Hyun Han** 

*Dept. of Mechanical System Engineering, Graduate School, Kyungnam University, Korea 

**Division of Mechanical System and Automation Engineering, Kyungnam University, Korea 

Address:  449 Wolyoung-dong, Masan, Gyeongsangnam-do, Korea, 631-701 
(Tel : 82-55-249-2590) 

(nhcong08@gmail.com) 

 
 

Abstract: This paper proposes ultrasonic sensor-based navigation method which utilizes fuzzy logic and reinforcement 
learning for navigation of mobile robot in an unknown environment. It based on the combination of elementary 
behaviors has been developed. Most of these behaviors are achieved by means of fuzzy inference systems. The 
proposed navigator combines two types of obstacle avoidance behaviors, one for the convex obstacles and one for the 
concave ones. The use of fuzzy inference systems to generate the elementary behaviors is quite simple and natural. 
However, one can always fear that the rules deduced from a simple human expertise are more or less sub-optimal. This 
is why we have tried to obtain these rules automatically. A new navigation method using fuzzy logic and reinforcement 
learning is proposed in this paper. 
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I. INTRODUCTION 
Various methods for controlling mobile robot systems 

have been developed which are generally classified into 
two categories: global planning and local control. The 
global path planning method includes configuration 
space method, potential field method, generalized 
Voronoi diagram, and graph search method. These 
methods have been carried out in off-line manner in 
completely known environments. However, these 
methods are not suitable for navigation in complex and 
dynamically changing environments where unknown 
obstacles may be located on a priori planned path. Thus, 
the sensor-based local path planning, so called obstacle 
avoidance, carried out in on-line manner is required in 
the navigation of mobile robots. Local path planning 
utilizes the information provided by sensors such as 
ultrasonic sensor, vision, laser range finder, proximity 
sensor and bumper switch. It is difficult to find the force 
coefficients influencing on the velocity and direction of 
mobile robots in cluttered environments which cannot 
be described as a mathematical model. In order to 
overcome the above problem, fuzzy logic and neural 
network approaches have been employed in navigation 
of mobile robot. A new navigation method using fuzzy 
logic and reinforcement learning is proposed in this 
paper. Whenever a mobile robot navigates in uncertain 
environment towards the goal position, avoidance 
behavior and goal-seeking behavior always conflict. 
The avoidance behavior is used to avoid the obstacles 
irrespective of the goal position, while the goal-seeking 
behavior is used to seek the goal position irrespective of 
obstacle location. It is necessary for a navigator to 
efficiently combine two behaviors. For this, two 

behaviors are independently designed by fuzzy logic 
and reinforcement learning and are combined by the 
action of a switching function according to situations 
around the mobile robot. The fuzzy logic is used to 
represent the mapping between the sensor input space 
and mobile robot action space. The correct mapping is 
found by reinforcement learning. Fuzzy rule bases are 
built by input and output fuzzy sets which quantize the 
sensor input space and the mobile robot action space, 
respectively. 

II. OBSTACLE DETECTION AND LOCAL 
MAP 

The mobile robot has three wheels; two driven wheels 
fixed at both sides of the mobile robot and one castor 
attached at the front and rear side of the robot. In this 
study, twelve ultrasonic sensors are mounted around of 
the mobile robot in middle layer for the detection of 
obstacles with various heights. Fig.1 shows the 
arrangement of the ultrasonic sensors marked as dots in 
the figure. The distances ej ( j = 1, 2,…12) from the 
origin of the robot frame {R} to obstacles detected by 
the sensor sj, can be defined as ej= δj + Rr . Here, Rr is 
the radius of the robot and the δj, is the range value 
measured by the sensor sj. A local map is introduced to 
record the sensory information provided by the 12 
ultrasonic sensors with respect to the mobile robot 
frame {R}. As shown in Fig.2, a sector map defined 
locally at the current mobile robot frame is introduced. 
Then, the obstacle position vector se’j with respect to 
the frame {R}' can be calculated by 
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where sej denotes the obstacle position vector defined 
at the frame { R } . Hence, when the mobile robot is 
located at a point 0'. the distance value se’j = || se’j || 
from the origin of the frame {R}' to the obstacle and 
angle sφ’ can be calculated by Eq.(1) . Here, ||.|| denotes 
Euclidean norm. 

 
Fig. 1. The local map defined at the frame {R} 

 
The local map defined at the frame {R}' is newly 

constructed by using the previous local map defined at 
the frame (R} as follows: 
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Where  and INT denote the updating operation and 
integer operation, respectively. If the range values 
obtained by sensors when the mobile robot is located at 
a point O' are ej = ( j = 1,2 ,... 12 ) , the new local map is 
partially updated as follows : 

sej  ej, j = 1,2 .... 12. The maximum range of the 
sonar sensor is set to be δmax = δmax - Rr. Any return 
range which is larger than is ignored. 

 
Fig. 2. The coordinate transformation for updating 

the local map 

III. NAVIGATION OF MOBILE ROBOT 
The primitive behaviors may be divided as follows: 

avoidance behavior and goal-seeking behavior. The 
output of a primitive behavior is defined by the vector 

TT Tmstwtvttvtu )),(),(())(),(()( =Δ= θ          (3) 
where t and Tms denote the time step and the sampling 

time, respectively. Here, T denotes the transpose and 
ω(t) denotes the angular velocity of the robot.  

In order for the mobile robot to arrive at the goal 
position without colliding with obstacles, we must 
control the mobile robot motion in consideration of the 
obstacle position Xoi, = (xoi, yoi ) , the mobile robot 
position X = ( x , y ) and its heading angle θ with respect 
to the world coordinate frame {W} shown in Fig.2. 

 
Fig. 3. The coordinate frames and control variables 

 
In order to avoid the increase in the dimension of 

input space, the distance values di , ( i = 1.2,3,4 ) are 
defined by 
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Fig. 4. The structure of the proposed navigator  

 
The motion of mobile robot can be realized by the 

control of its heading velocity, v and incremental 
steering angle θΔ . Thus, we choose the input variables 
for avoidance behavior as ( )4,2,1,0 L=−= iXXd ii , 
and those for goal-seeking one as heading angle 
differenceψ  and distance to goal, XXz g −= . The 

output variables for two behaviors are chosen as the 
incremental steering angle, θΔ  and velocity, v. The 
variable di is calculated by (Eq 4). The ψ is the angle 
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between heading direction of the mobile robot and the 
direction of the goal position and the z is the distance 
from the current position, X = (x,y) to goal position, 

( )ggg yxX ,= . 
A fuzzy operator converts the crisp input data, z into 

the linguistic values, z~  considered as labels of fuzzy 
sets and is defined as 

)(~ zfuzzifierz =                                                                                       
where fuzzifier denotes a fuzzification operator. From 

now on, tilde sign (~) representing the fuzzy set will be 
omitted for simplicity. The input linguistic variables 

ψ),42,1( L=idi and z are expressed by linguistic 
values (VN, NR, FR), (NB, NM, NS, ZZ, PS, PM, PB) 
and (VN, NR, FR, VF), respectively. The output 
linguistic variables v and θΔ  are expressed by the 
linguistic values with membership functions having the 
triangular shaped functions shown in Fig. 5. Their 
center positions are going to be determined by 
reinforcement learning method. The linguistic terms 
have the following meanings: 

Table 1. Linguistic term meanings 

VN: very near NR: near 
FR: far VF: very far 
NB: negative big NM: negative 

medium 
NS: negative 
small 

ZZ: zero 

PS: positive 
small 

PM: positive 
medium 

PB: positive big  
 

 
(a) The distance value of the ith sensor suit 

 
(b) The distance to goal position 

 
(c) The heading difference ψ 

 
(d) The linear velocity of mobile robot for the k-th 

behavior 

 
 (e) The incremental steering angle for k-th behavior 

Fig. 5. The membership functions of the input-
output variables 

Fuzzy subsets contain elements with degree of 
membership, while fuzzy membership function ( )⋅zμ  
of fuzzy set, z assigns a real number between 0-1 to 
every element in the universe of discourse. 

 

IV. SIMULATIONS AND EXPERIMENTAL 
RESULTS 

1. Simulations 

 
(a) Escape from loop type and dead-end type trap 

 
(b) Velocity (thick line) and steer velocity (thin line) 

Fig. 6 Simulation for combining behaviors 
 
Fig.6 is shown the simulation for combining 

behaviors. Once the rule bases for the two behaviors are 
completely built through reinforcement learning, the 
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two behaviors will be combined so that the mobile robot 
arrives at the given goal position without colliding with 
obstacles. When the mobile robot navigates in a certain 
environment, one of these behaviors must be selected at 
each action step in order to accomplish its goal. 

Fig. 6(a) shows the performance of the combining 
behaviors to escape from trap situations and go to goal. 
The robot first arrives by the wall-following behavior, 
and then enters a concave obstacle and leaves it under 
the avoidance of concave obstacle strategy. On the way, 
it encounters dead-end alleys, successfully recovers 
from them by avoidance behavior and eventually finds 
the goal under the goal-seeking behavior. The variation 
of the actual action decisions over time are shown in Fig. 
6(b). 

2. Experiment 
The obstacle avoidance and goal-seeking experiments 

were performed in our laboratory. 

 
Fig. 7 Wall-following, obstacle avoidance, and goal-

seeking experimental method 

 

Fig. 8 shows the location of obstacles, the robot 
trajectory and its heading angle with respect to world 
coordinate frame when the robot travels from start 
position to goal position. If the robot encounters the  
 

 
1. Wall-following 2. Wall-following 

 
3. Goal-seeking 4. Obstacle avoidance 

5. Obstacle avoidance 6. Goal-seeking  

Fig. 8. Experiment for combining behaviors scene 

obstacles, it avoids the obstacles by using the avoidance 
behavior. The behavior to be used at the present 
situation is selected by fuzzy decision maker. As can be 
seen from the figure, the robot can successfully navigate 
in unknown environments even if the environments are 
not used for constructing the rule bases of the behaviors 
in the simulations. This means that the robot can adapt 
to new environments. 

V. CONCLUSION 

We have proposed the navigation system capable of 
performing autonomous navigation in unknown 
environments. In order to evaluate the performance of 
the overall system, a number of experiments have been 
undertaken in various environments. The experimental 
results show that the mobile robot with the complete 
navigation system can arrive at the goal position 
according to the desire even if the wheel slip occurs. 
From the developed of navigation system, it was 
observed that the mobile robot can successfully arrive at 
the desired position through the unknown environments 
without colliding with obstacles. 
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