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Abstract

This paper proposes a computationally reduced
method for the step-size update in the variable step-
size affine projection algorithm (VSS-APA). Using the
previous steady-state analysis and the estimated ex-
cess means square error, updating the step-size can be
simplified while the advantage of VSS-APA is main-
tained.
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1 Introduction

Signal processing is one of the most important parts
in the industrial applications. A useful operation could
be control, data transmission, denoising, prediction,
filtering and etc. [1]. It is also applicable to the sensor
acquisition and the communication among each unit
in robotics.

One of the widely used algorithms in this field is
the normalized least mean square (NLMS) because
of its simple implementation. However it has poor
convergence speed for the colored input signal. To
overcome this disadvantage, the affine projection al-
gorithm (APA) was suggested by Ozeki and Umeda
[2]. By whitening the input signal, the APA can
achieve faster convergence speed than NLMS, while
the steady-state error of the APA gets worse than
that of the NLMS. Reducing step-sizes as time goes
on may make the mean-square deviation (MSD) small,
which help overcome the disadvantage. As well as, the
previously suggested algorithms such as the variable
step-size or the variable regularization algorithms can

achieve both a fast convergence speed and low steady-
state errors simultaneously [3, 4].

In this paper, we focus on the variable step-size
APA (VSS-APA) suggested by Shin et al. [4]. Shin’s
VSS-APA shows good performance over the wide
range of system orders, denoted by n, and the input
signals, but the projection of the estimation error into
the input regression space requires a large amount of
computation and the resulting projection vector also
has a big dimension (n by 1) that is used in the step-
size adjustment at each iteration. As the system order
increases, this issue becomes serious. To moderate this
problem, this paper suggests an algorithm that esti-
mates the excess mean square error (EMSE) instead
of the projection vector. With a scalar value EMSE, a
lot of computation is reduced including the projection
operation.

To update the instant value of the step-sizes from
the EMSE, we use the previous steady-state analysis
of the APA. It is known that the steady-state errors
are related to the step-size and the variance of the
measurement noise in analysis. Moreover, when the
step-size is large, it is also affected by the projection
order. Since the expected EMSE can be calculated in
the analysis for each step-size, the preferable step-size
can be inversely obtained from the EMSE. Finally, the
required computation gets remarkably reduced while
the performance is still quite comparable for any pos-
sible input signals. The simulation results verify the
performance of the proposed algorithm for various in-
put signals and several system and projection orders.

2 Preliminary

In the APA to be analyzed, the input regression
matrix and desired signal sequence is denoted by Ui

and di, respectively at time i ≥ 0. The recursion equa-
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tion of estimated weight ŵi ∈ R

n×1 for an unknown
weight vector wo ∈ R

n×1 with the system order n and
the projection order M is

ŵi+1 = ŵi + µUi

(
ǫI + UT

i Ui

)−1
ei, (1)

where

Ui =
[
ui ui−1 · · · ui−M+1

]
∈ R

n×M , (2)

ui =
[
xi xi−1 · · · xi−n+1

]T
∈ R

n×1, (3)

ei = di − UT
i ŵi ∈ R

M×1 (4)

di =
[
di di−1 · · · di−M+1

]T
∈ R

M×1, (5)

ǫ is the regularization factor, and µ is the step-size.
The desired vector from the linear model:

di = UT
i wo + vi, (6)

where vi =
[
vi vi−1 · · · vi−M+1

]T
∈ R

M×1 is ad-
ditive measurement noise. Then, the error vector ei

rewritten as

ei = di − UT
i ŵi = UT

i w̃i + vi, (7)

where w̃i = ŵi − wo. The a priori error vector is
denoted by ea,i = uT

i ŵi. The EMSE is defined by

EMSE , lim
i→∞

E |ea,i|
2
. (8)

Since a small value of ǫ is assumed in this paper,
we start from (22) in [5],

EMSE =
µσ2

v

2 − µ

Tr (E[Ai])
Tr (S · E[Ai])

, (9)

where

Ai = (ǫI + UT
i Ui)−1UT

i Ui(ǫI + UT
i Ui)−1 (10)

and σ2
v is the variance of vi. When µ is small, identity

matrix I ∈ R

M×M can replace S in (9). Then

EMSE ≃

µσ2
v

2 − µ
. (11)

When µ is large, S ≃ 1 · 1T is substituted into (9).
Since Tr [Ru] = Tr

[
E

{
uiuT

i

}]
= E{‖ui‖

2
}, in this

case,

EMSE ≃

µσ2
v

2 − µ
Tr (Ru) E

{
M

‖u‖2

}
(12)

≃

µσ2
vM ‖ui‖

2

2 − µ
E

{
1

‖u‖2

}
. (13)

When n ≫ 1, E{1/ ‖ui‖
2
} ≃ 1/E{‖ui‖

2
}, which re-

sults in

EMSE ≃

µσ2
vM

2 − µ
. (14)

3 Variable Step-size

In the previous section, theoretically EMSE is de-
termined for both small and large step-sizes in the case
of small ǫ. In this section, EMSE is estimated from the
measured error. If vi is assumed to be independent,
identically distributed (i.i.d) and zero-mean, it is ob-
tained that

E{ei} = E{ea,i + vi} = E{ea,i}. (15)

The following time average εi of ei is calculated by

εi+1 = αεi + (1 + α)ei, (16)

with a smoothing factor α = 1 − 1/(K), where K is
a positive integer. When K is close to 1, εi ≃ ei and
When K ≫ 1, εi is close to E{ea,i}. In the both cases,

EMSE = E |ea,i|
2
6= |εi|

2
. (17)

However, if we properly select the value of K so that
εi ≃ ea,i, it is reasonable that

EMSE ≃ |εi|
2
. (18)

Using the previous results (11) and (14), the following
equation is possible:

|εi|
2
≃

µβ

2 − µ
, (19)

where

β =
{

σ2
v for small µ, (20a)

Mσ2
v for large µ. (20b)

From (19), the step-size update equation is inversely
obtained as follows:

µi =
2 |εi|

2

β + |εi|
2 . (21)

Adjusting β in the run-time, depending on the state
of the algorithm, is another issue for the performance
improvement, which is out of the scope. Instead of
varying β, the constant values are used in the following
section. For the performance reason, upper bound 1
in µ is applied [6].

4 Simulations

We conduct several simulations to verify the pro-
posed VSS-APA in a channel estimation scenario. The
adaptive filters and the unknown channels are assumed
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Figure 1: (a) MSD learning curves of the proposed
VSS-APA and the standard APA with different step-
sizes between 0.01 and 1 for a zero-mean white Gaus-
sian input signal at n = 64,M = 4, SNR = 30 dB
β = σ2

v , and K = 8. (b) the corresponding variable
step-size of the proposed VSS-APA.

to have the same length of taps in stationary envi-
ronments. It is defined that SNR = 10 log10(σ2

y/σ2
v),

where σ2
y is the variance of output signals. In this sec-

tion, n = 64, M = 4, and SNR = 30 dB. The plots
are the results of the ensemble average over 50 inde-
pendent trials.

The first simulation is for verifying how closely the
proposed algorithm follows the minimum route of the
MSD of the each step-size. The input signal is a zero-
mean white Gaussian with a unit variance. As shown
in Fig. 1, the MSD learning curve of the proposed
VSS-APA has fastest convergence rate that is almost
equal to that of the standard APA with µ = 1. It also
shows the smaller steady-state error than that of the
standard APA with µ = 0.01. Fig. 1b shows how the
step-size is varied according to the iteration. At the
beginning, large step-sizes is used and after 2000 in
the iteration, almost same small step-sizes are used.

The second simulation shows how the performance
is affected by K. When K = 1, the proposed VSS-
APA shows a poor performance in the convergence
rate and the steady-state error. As K increases, the
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Figure 2: MSD learning curves of the proposed VSS-
APA with different values of K at n = 64, M = 4,
SNR = 30 dB, and β = σ2

v .

convergence rate of the proposed VSS-APA get slower
while the steady-state error get smaller, which mean
the value K plays an important role in the perfor-
mance of the proposed algorithm.

The third simulation shows how the performance is
affected by β. When β = σ2

v , the proposed VSS-APA
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Figure 3: MSD learning curves of the proposed VSS-
APA with different values of β at n = 64, M = 4, SNR
= 30 dB, and K = 4.

shows apparently fastest convergence rate in Fig. 3
at the cost of larger steady-state error than those of
others. It is verified that decreasing the value of β

leads smaller steady-state errors.
The last two simulations are for performance com-

parisons to the previous results in the literature [3, 4].
Their tunning parameters are α = 0.9922, C =
1.875 × 10−4 in Shin’s VSS-APA and η = 1, δ = 0.06
in Rey’s VR-APA. Fig. 4 shows the MSD learning
curves of the proposed VSS-APA, Shin’s VSS-APA,
and Rey’s VR-APA when a zero-mean white Gaussian
input signal excites the system. The proposed VSS-
APA shows the comparable result.

Fig. 5 shows the MSD learning curves of the al-
gorithms when an AR input signal excite the sys-
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Figure 4: MSD learning curves of the proposed VSS-
APA, Shin’s VSS-APA and Rey’s VR-APA excited by
a zero-mean white Gaussian signal at n = 64, M = 4,
SNR = 30 dB, β = 2σ2

v , and K = 8.

tem. The AR input signal is generated by filtering
a zero-mean white Gaussian signal through G1(z) =
1/(1 − 0.9z−1). In this case, the performance of the
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Figure 5: MSD learning curves of the proposed VSS-
APA, Shin’s VSS-APA and Rey’s VR-APA excited by
an AR signal at n = 64, M = 4 SNR = 30 dB, β = σ2

v ,
and K = 8.

proposed VSS-APA is quite comparable to those of the
others.

5 Conclusion

This paper proposed a simple way of updating the
step-size using the EMSE. The EMSE was estimated
from the measurement error and the step-size was
inversely derived based on the previous steady-state
analysis. As a result, the calculation needed for step-
size update became significantly reduced compared
to the previous VSS-APA, maintaining its advantage.
The simulation results verified the performance of the
proposed VSS-APA. It was also shown that additional

parameter β led the trade-off between the convergence
rate and the steady-state error in the performance.
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