
A Learning Petri Net Model Based on Reinforcement Learning

 Liang-Bing Feng, Masanao Obayashi, Takashi Kuremoto and Kunikazu Kobayashi

Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, Japan

 (Tel : 81-836-85-9518; Fax : 81-836-85-9501)

(n007we, m.obayas,wu,koba@yamaguchi-u.ac.jp)

Abstract: In this paper, a hybrid intelligent control system – Learning Petri Net (LPN) that combines the Petri net and

reinforcement learning is presented. LPN is expanded High-level Time Petri nets, in which some transition’s input arc

weight function and transition delay time have a value item which records the reward from environment. Based on

interaction with environment, LPN can adjust the arc weight function and transition delay time when it’s modeling

system is running. The arc weight function and transition delay time learning algorithm is based on Q-learning – a

kind of Reinforcement Learning (RL). Finally, for the purpose of certification of the effectiveness of our proposed

Learning Petri net，it is used to model a discrete event dynamic control system – Sony AIBO learning control system

as an example. The result of the experiment shows this method is correct and effective.

Keywords: Petri Net, Reinforcement Learning, Discrete event dynamic system.

I. INTRODUCTION

Petri nets combine a well defined mathematical

theory with a graphical representation of the dynamic

behavior of systems. The theoretic aspect of Petri nets

allows precise modeling and analysis of system behavior,

while the graphical representation of Petri nets enable

visualization of the modeled system state changes [1]. So,

Petri net is widely used to model various dynamic

systems. But the Petri net doesn’t have the learning

capability, all the parameters which describe the system

characteristic need to be set individually and empirically

when dynamic system is modeled. Recently, there are

some researches for making the Petri net has learning

capability. In paper [2], the global variables are used to

record all state of colored Petri net when it is running.

The global variables are optimized and colored Petri net

is updated according to these global variables. Here,

colored Petri net is only a tool of learning. A learning

Petri net model which combines Petri net with neural

network is proposed in [3]. This learning Petri net model

can realize an input-output mapping through Petri net’s

weight function is adjusted just like an artificial neural

network. And this learning method was applied to

nonlinear system control. Paper [4] created a Time

Interval Petri net for modeling real-time decision making.

It makes the Petri net have learning capability through

converting arc’s type, adding a record to an output arc

operator table. Based on these researches, a learning

Petri net model based on reinforcement learning is

proposed in this paper.

The rest of this paper is organized as followed.

Section 2 gives the definition of LPN and illustrates the

learning algorithm of LPN. Section 3 describes the

application to discrete event dynamic system control and

gives the simulation result. Finally, Section 4

summarizes the paper and discusses some directions for

future work.

II. THE LEARNING PETRI NET AND

LEARNING ALGORITHM

Learning Petri nets is Petri nets which have learning

capability.

1. Definition of Learning Petri net

Learning Petri net is constructed based on High-

Level Time Petri Net (HLTPN).

Definition 1: HLTPN has a structure HLTPN= (NG,

C, W, DT, M0) [5], where

(i). NG= (P, T, F) is called net graph with P that is a

finite set of nodes, called Places. ID:PN is a function

marking P, N = (1,2,…) is the set of natural number.

Using P1, P2, …, Pn represents the elements of P and n is

the cardinality of set P;

T is a finite set of nodes, called Transitions, which

disjoint from P, PT= ID:TN is a function marking

T. Using T1, T2, …, Tm represents the elements of T, m is

the cardinality of set T;

F  (P×T)∪(T×P) is a finite set of directional arcs,

known as the flow relation;

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 290

(ii). C is a finite and non-empty color set for

describing difference type data;

(iii). W: F C is a weight function on F. If

F  (P×T), the weight function W is Win that decides

which colored Token can go through the arc and enable T

fire. This color tokens will be consumed when transition

is fired. If F  (T×P), the weight function W is Wout that

decides which colored Token will be generated by T and

be input to P.

(iv). DT: TN is a delay time function of a transition

which has a Time delay for an enable transition fired.

(v). M0: PUpPμC(p) such that pP, M0(p)

μC(p) is the initial marking function which associates a

multi-set of tokens of correct type with each place.

Now, we give the definition of LPN.

Definition 2: Learning Petri Net has a structure,

LPN= (HLTPN, VW, VT), where

(i). HLTPN= (NG, C, W, DT, M0) is a High-Level

Time Petri Net.

(ii). VW (the value of weight function): WinR, is a

function marking on Win. A F  (P×T) has several Win

and every Win has a reward value Rreal number.

(ii). VT (the value of delay time): DTR, is a

function marking on DT. A transition has several DT and

every DT has a reward value Rreal number.

Using LPN, a mapping of input-output Token is

gotten. For example, we construct a LPN which is

showed in Fig. 1. Colored Tokens Cij (i=1;j=1,2…n) are

input to P1 by Tinput. There are n weight functions

W(<Cij>, VWCij,i,j) on a same Fi,j. Token Cij obeys weight

functions W(<Cij>, VWCij,i,j) that is decided by the value

VWCij,i,j. After Token Cij passed through arc Fi,j

(i=1;j=1,2…n), Ti,j(i=1; j= 1,2 …n) fires and generates

Tokens Cij(i=2;j=1,2…n) in P2. After P2 has color Token

Cij(i=2;j=1,2…n), Ti,j(i=2; j= 1,2 …n) fires and different

colored Token Cij(i=3;j=1,2…n) is generated. Then, a

reward will be gotten from environment according to

whether it accords with system rule that C3j generated by

C1j. These rewards are propagated to every VWCij,i,j using

algorithm 1.

P1

T1,n

P2

F1,n

<C2,1>

T1,1

F1,1

P3

W(<C1,j>, VWC1j,1,1)

W(<C1,j>, VWC1j,1,n)

T2,n

T2,1
F2,1

F2,n

DT2,1,VT2,1

DT2,n,VT2,n

Reward1
Reward2

Tinput

<C2,n>

:
:
:

W(<C2,j>, VWC2j,2,1)

W(<C2,j>, VWC2j,2,n)

<C3,1>

<C3,n> Toutput

:
:
:

Fig.1. A Learning Petri Net.

Using LPN to model a dynamic system, the system

state is modeled as Petri net place and the system state

change is modeled as transition. Several characteristics

parameters of system state and action can be expressed

by Token number and color, arc weight function,

transition delay time, and so on. When the system is

modeled, some characteristics are unknown. So, these

characteristics are set randomly and are gotten gradually

and appropriately when the system runs. So, we use

Learning Petri net to learn the system condition from

real-time situation.

2. Learning algorithm of Learning Petri net

In Learning Petri net, RL is used to learn the VM and

VT through interacting with environment. RL could learn

the optimal policy of the dynamic system through

environment state observation and improve its behavior

through trial and error with the environment. RL agent

senses the environment and takes actions. It receives

numeric award and punishments from some reward

function. The agent learns to choose actions to maximize

a long term sum or average of the future reward it will

receive [6].

In this paper, the arc weight function and transition

delay time learning algorithm are based on Q-learning –

a kind of RL. In arc weight function learning algorithm,

VWCij,i,j is randomly set firstly. So, the weight function on

the arc is arbitrary. When the system runs, we use

formula (1) to update VWCij,i,j.

VWCij,i,j = VWCij,i,jj +α[r+ 1 , 1,()ci j i jVW   - VWCij,i,j], (1)

where, (i).αis the step-size, is discount rate.

(ii). r is reward which W(<Cij>, VWCij,i,j) gets when

Ti,j is fired by <Cij>. Here, because environment only

gives system reward at last step, so a feedback learning

method is used. If W(<Cij>, VWCij,i,j) through Ti,j

generated Token <Ci+1,j> and W(<Ci+1j>, VWCi+1j,i+1,j)

through Ti+1,j generated Token <Ci+2,j>, VWCi+1j,i+1,j gets

an update value. And this value is feedback as W(<Cij>,

VWCij,i,j) next time reward r.

(iii). 1 , 1,()ci j i jVW   is calculated from all W(<Ci+1j>,

VWCi+1j,i+1,j) feedback value as formula (2).

1 , 1,()ci j i jVW   t= 1 , 1,()ci j i jVW   t-1+rt , (2)

where t is time for that <Ci+1j> is generated by

W(<Cij>, VWCij,i,j).

In the transition delay time learning algorithm, the

reward can learn immediately. VTi,j can be updated using

formula (3).

VTi,j= VTi,j+α[r+ R - VTi,j] , (3)

where, r is reward that an action get after it acted.

R is average of all the reward.αis the step-size,  is

discount rate.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 291

Now, we found the algorithm of Learning Petri net

which is listed in Table 1.

Table 1. Learning Algorithm for Learning Petri Net

Algorithm 1 Weight function learning algorithm

Step 1. Initialization: Set all VWij and r of all input arc’s

weight function to zero.

Step 2. Initialize learning Petri net. i.e. make the Petri net

state as M0.

 Repeat i) and ii) until system becomes end state.

i) When a place gets a colored Token Cij, there is a

choice that which arc weight function is obeyed if the

functions include this Token. This choice is according

to selection policy which is ε greedy (ε is set

according to execution environment by user, usually

0<ε<<1).

A: Select the function which has the biggest VW cij,i,j at

probability1-ε;

B: Select the function randomly at probability ε.

ii)The transition which the function correlates is fired

and reward is observed. Adjust the weight function

value using VWCij,i,j = VWCij,i,jj +α[r+

1 , 1,()ci j i jVW   - VWCij,i,j]. At the same time, α

[r+
1 , 1,()ci j i jVW  

- VWCij,i,j] is fed back to weight

function with generate Cij as its reward for next time.

Algorithm 2 Delay time learning algorithm

Step 1. Initialization: Set all VTij of transition to zero.

Step 2. Initialize learning Petri net. i.e. make the Petri net

state as M0.

 Repeat i) and ii) until system becomes end state.

i) When a transition is fired, choose a delay time using

selection policy which is ε greedy (ε is set according

to execution environment by user, usually 0<ε<<1).

A: Select delay time which has the biggest VTij of

service at probability1-ε;

B: Select the function randomly at probability ε.

ii) After transition fires and reward is observed, the

weight function value is adjusted using VTi,j= VTi,j+

α[r+ R - VTi,j].

III. APPLICATION TO DISCRETE EVENT

DYNAMIC SYSTEM CONTROL

In this section, we will apply the LPN to control a

discrete event dynamic system.

1. Discrete event dynamic system and AIBO voice

command recognition system

A discrete event dynamic system is a discrete-state,

event-driven system of which the state evolution depends

entirely on the occurrence of asynchronous discrete

events over time [7]. Petri nets have been used to model

various kinds of dynamic event-driven systems like

computers networks, communication systems, and so on.

In this paper, it is used to model Sony AIBO learning

control system for the purpose of certification of the

effectiveness of our proposed Learning Petri net.

AIBO (Artificial Intelligence roBOt) is a type of

robotic pets designed and manufactured by Sony. AIBO

is able to execute different actions, such as go ahead,

move back, sit down, stand up and cry, and so on. And it

can "listen" voice via microphone. A command and

control system will be constructed for making AIBO

understand several human voice commands by Japanese

and English and take corresponding action.

The simulation system is developed on Sony AIBO’s

OPEN-R (Open Architecture for Entertainment Robot)

[8]. The architecture of simulation system is showed in

Fig. 2. Because there are English and Japanese voice

commands for same AIBO action, the partnerships of

voice and action are established in part (4). The lasted

time of an AIBO action is learning in part (5). After an

AIBO action finished, the rewards for action and action

lasted time correctness are given by that different

AIBO’s sensors are touched.

(1) Voice

monitoring

(2) Voice

Analysis

(3) Voice

Recognition

learning

(5)Action

time

Learning

(6) AIBO

action

Reward

 (4)Action

Learning

Fig.2 The system architecture of voice command recognition

2. Learning Petri net model for AIBO voice command

recognition system

In the Learning Petri net model for AIBO voice

command recognition system, AIBO action change,

action time are modeled as transition, transition delay,

respectively. The human voice command is modeled by

different color Token. The LPN model is showed in Fig.

3. The meaning of every transition is listed below:

Tinput change voice signal as colored Token which

describe the voice characteristic.

T11, T12 and T13 can analyze the voice signal. T1

generates 35 different Token VL1….VL35 according to the

voice length. T2 generates 8 different Token E21…E28

according to the front twenty voice sample energy

characteristic. T3 generates 8 different Token E41…E48

according to the front forty voice sample energy

characteristic [9]. These three types Token are

compounded into a compound Token <VLl> + <VE2m>

+ <VE4n> in P2 [10].

T2j generates the different voice Token. The input

arc’s weight function is ((<VLl>+<VE2m>+ <VE4n>),

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 292

http://en.wikipedia.org/wiki/Pet

VWVlmn,2j) and the output arc’s weight function is

different voice Token. And voice Token will generate

different action Token through T3j.

When P4 – P8 has Token, AIBO’s action will last. T4j

takes Token out from P4 – P8, and makes corresponding

AIBO action terminates. T4j has a delay time DT4i, and

every DT4i has a value VT4i. Transition adopts which

delay time DT4i according to VT4i.

P1

<VL1...VL35>

<VE41..VE48>

<VE21..VE28>

<stand up>

<go>

<sit down>

<cry>

<move back>

P2

P4

P5

P6

P7

P8

<VData>

((<VLl+VE2m+VE4n>), VWVlmn,2j)

:

:

:

:Tinput

T11

T12

T13

T21

T22

T2,n-1

T2,n

VC1

VC2

VCn-1

VCn

(<VCi>, VWVCi,3j)

T31

T32

T33

T34

T35

T41

T42

T43

T44

T45

Toutput

reward2

reward3

reward1

P3 P4

(DT41,VT41)

(DT42,VT42)

(DT43,VT43)

(DT44,VT44)

(DT45,VT45)

Fig. 3 The LPN model of voice command recognition

3. The results of simulation

When the system begins running, it can’t recognize

the voice commands. A voice command comes and it is

changed into a compound Token in P2. This compound

Token will randomly generate a voice Token and puts

into P3. This voice Token randomly arouses an action

Token. A reward for action correctness is gotten, then,

VW and VT are updated. For example, a compound

colored Token (<VLl>+ <VE2m> + <VE4n>) fired T21

and colored Token VC1 is put into P3. VC1 fires T32 and

AIBO acts "go". A reward is gotten according to

correctness of action. VWVC1,32 is updated by this reward

and VWVC1,32 updated value is fed back to P2 as next time

reward value of (<VLl>+ <VE2m> + <VE4n>) fired T21.

After an action finished, a reward for correctness of

action time is gotten and VT is updated.

 Fig. 4 Relation of training times and recognition probability

Fig. 4 shows the relation of training times and voice

command recognition probability. Probability 1 shows

the successful probability of recently 20 times training.

Probability 2 shows the successful probability of total

training times. From the result of simulation, we get that

Learning Petri net is correct and effective using the

AIBO voice command control system.

IV. CONCLUSION

In this paper, we proposed a hybrid intelligent control

system – Learning Petri Net (LPN) that combines the

Petri net and reinforcement learning. The definition of

LPN is given and the learning algorithm is constructed.

For the purpose of certification of the effectiveness of

our proposed Learning Petri net，it is used to model

Sony AIBO learning control system as an example. The

result of the experiment shows this method is correct and

effective.

We plan to use reinforcement learning algorithm to

adjust other parameter of Petri net and extend our work

to model other dynamic system in the future.

REFERENCES

[1]J. Wang (2007), Petri nets for dynamic event-driven

system modeling. Handbook of Dynamic System

Modeling, Ed: Paul Fishwick, CRC Press: 1-17

[2]V. Baranaushas, K. Sarkauskas (2006), Colored Petri

Nets-Tool for control system Learning. Electronics and

Electrical Engineering, 4(68):41-46

[3]Hirasawa K., Ohbayashi M., Sakai S, Hu J (1998),

Learning Petri network and its application to nonlinear

system control. IEEE Transactions on systems, man and

cybernetics. Part B: Cybernetics, 28(6):781-789

[4]Vadim B., David C. W. (2005), Machine Learning for

Time Interval Petri Nets. In Australian Joint Conference

on Artificial Intelligence, Springer-Verlag: 959-965

[5]Guangming C., Minghong L., Xianghu W. (2006),

The Definition of Extended High-level Time Petri Nets.

Journal of Computer Science, 2(2):127-143

[6]R. S. Sutton, A. G. Batto (1998), Reinforcement

learning: An Introduction. The MIT Press. Cambridge,

Massachusetts, USA

[7]B. Hrúz, M.C. Zhou (2007), Modeling and Control of

Discrete-event Dynamic Systems: with Petri Nets and

Other Tools. Springer Press, London, UK

[8]OPEN-R programming group (2004), OPEN-R

programming introduction. Sony corporation, Japan

[9]Frederick JelinekR (1999), Statistical Methods for

Speech. The MIT Press. Cambridge, Massachusetts,

USA

[10]H.S.Yan,J.Jian (1999), Agile concurrent engineering.

 Integrated Manufacturing Systems, 10(2): 103-113

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 293

http://mitpress.mit.edu/catalog/author/default.asp?aid=4312

