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Abstract: In this study, we propose a new control strategy for a arm robot system which has 9-DOF actuated by 

McKibben artificial muscles. Since the dynamics of the McKibben actuators are complex due to the dependence on the 

internal pneumatic pressure, it is difficult to control the robot by solving the inverse kinematics according to the motion 

equations in real-time computing. Also, the state of each link of the arm cannot be determined uniquely from the 

position of the hand due to the ill-posedness in the arm posture. To resolve these difficulties, we introduce a notion of 

imitation, that is, 1) a human tutor taught the robot several patterns of exemplary trajectories by moving the robotic arm 

directly, so that the robot’s forward model can learn how the robot dynamics follow those exemplary trajectories. Then, 

2) the exemplary trajectories are pursued by a controller that has learned the relationship between the control signal and 

the consecutive arm states before and after the control signal is applied during the free control phase prior to the 

real-time control. 
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I. Introduction 

In recent years, studies of robots using artificial 

muscles have been actively carried out, because of 

naturalness of produced motions. McKibben artificial 

muscle is one of such artificial muscles, which is 

actuated by pneumatic power. The McKibben actuator is 

drawing an interest because it realizes flexible motions 

like human muscles and of light weight and reasonable 

cost [1].  

The improvement in the servo system of the 

McKibben actuator, which has been brought by the 

recent large computation power, contributes to extending 

the application field of the McKibben actuator [1]. 

However, several inherent difficulties in the McKibben 

actuator hinder further practical use. One difficulty 

comes from the variation in the control valve; it causes 

large individual deviations in the degree of expansion 

and shrinkage of the actuator. Second, it does not 

necessarily emit the same control torque for a specific 

control input because its tension is dependent on the 

internal air pressure of the actuator, that is, there is an 

internal state. Moreover, when there are multiple 

actuators, they could physically interfere with each other. 

Therefore, the development of the control method that 

resolves these difficulties has been desired in order to 

allow the McKibben actuators to be used more in 

practical situations. 

In this study, we propose a machine-learning 

approach to controlling a 9-DOF human-like robotic arm 

with 26 McKibben actuators, so that it follows the 

exemplary trajectories taught by a human tutor in 

advance. In particular, we aim to control the robot to 

reproduce handshake gesture.  To realize natural 

movements, we do not set a rigid target trajectory, but let 

the controller perform a real-time motion planning in a 

flexible manner to the robot state. The motion planning is 

done by a forward model implemented as a Gaussian 

Process (GP) regressor [2], so that the generated 

trajectory resembles one of the exemplary trajectories. 

The generation of control signals to pursue the target 

trajectory is realized by an inverse model implemented as 

a Normalized Gaussian network (NGnet) [3], which 

learns the relationship between the control signal and the 

consecutive arm states before and after the control signal 

is applied during the free control phase. A statistical 

combination of these two models is expected to allow us 

to avoid the difficulty in solving the complex motion 

equations of the 9-DOF robot arm system actuated by 

McKibben actuators and to realize human-like natural 

movements. 

II. Systems 

1. Robotic Arm 

Figure 1 shows the appearance of the robot arm 

system we used in this study, which imitates the human 

right arm. It has five joints and six links which are 

connected to and controlled by 26 McKibben actuators. 

A McKibben actuator is able to generate a contractile 

force axially when compressed air is put it in. 
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Fig.1. Appearance of the robotic arm 

2. Observations and Control 

 The 3-D arm positions are monitored by a motion 

capture device (MAC3D system, Motion Analysis 

Corporation) with the sampling frequency of 200 Hz. 

Ten markers are attached so that the motion capture 

device can monitor all the positions of the 9 links. Since 

each marker position is represented as a 

three-dimensional vector, the state vector ts  that 

indicates all the positions of the ten markers becomes a 

30-dimensional vector at each time t . During the 

imitation phase, in which a human tutor directly 

manipulates the robot arm like a handshake, exemplary 

trajectories of the manipulated robot arm, D , are also 

monitored by the motion capture device. 

In addition to the link positions, the internal air 

pressure of each McKibben actuator is monitored. Since 

there are 26 McKibben actuators, the internal air pressure 

of all the actuators at time t are represented by a 

26-dimensional vector tP . 

The robotic arm is controlled by a servo system; for 

each McKibben actuator, the target air pressure gtP  is 

provided as the control signal and the servo system 

works to realize the target pressure instantaneously. 

III. Controlling method 

After the robot controller has been trained based on 

the set of exemplary trajectories, D , the robot arm is 

controlled in real time by sequentially estimating the 

target air pressure gtP  at time t, given the current state 

ts , the previous state 1−ts , and the current internal state 

tP . This estimation is done by 
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1. Gaussian Process (GP) 

In the imitation phase, the forward model 

),,|( 11 Dsssp ttt −+  is identified based on the exemplary 

trajectories D . We assume that in the forward model, 

each dimensionality (each marker position) is 

independent, i.e.,  ),,|( 11 Dsssp ttt −+   is factorized as 
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probabilistic model, Gaussian Process (GP) regressor 

[2]. 
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of the state vectors 
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The parameters
1 2
,θ θ  and β  are determined 

heuristically. 

The GP-based forward model is expected to 

reproduce a trajectory similar to one of the exemplary 

trajectories D ; this generalization capability is due to 

the smooth kernel function ( , )k ⋅ ⋅ . It is also noted that in 

this imitation scheme, each trajectory to be imitated is 

realized by the target robot system rather than a human 

demonstrator. Then, each exemplary trajectory is 

consistent with the kinematics of the robot system. 
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2. (ormalized Gaussian (etwork ((Gnet) 

The inverse model ),,|( 1+tttgt ssPPp  is used to 

solve the inverse kinematics of the target robot system, 

that is, to output an appropriate control signal gtP , given 

the current state ts , the current internal state tP , and the 

target next state 1+ts . The inverse model is represented 

by NGnet [3], a probabilistic model-based regressor. 

Although the inverse kinematics are often ill-posed, 

especially when the robot’s DOF is large, this difficulty 

can be avoided by learning probabilistic relationship 

between the control signal and the consecutive robot 

states before and after the control signal is applied. 

Specifically, ),,|( 1+tttgt ssPPp  is given by 
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During the free control phase (see below), the 

parameters kW , ks , kΣ , kg , kµ , and kQ  are estimated 

by variational Bayes (VB) estimation method [3]; 

though the VB method obtains the posterior distribution 

of the parameters, we just used their means in eq. (2). 

The NGnet divides the input space softly into 

sub-regions by means of Gaussian-based soft clustering, 

and linearly represents the relationship between the 

input and the output in each local sub-region, so that the 

final output is integrated such linear relationship like eq. 

(2). Since the relationship between the control input and 

the current and next states of the robotic arm should be 

nonlinear but is expected to be smooth within each local 

sub-region, the locally linear model like NGnet seems 

appropriate to well approximate such a moderate 

nonlinear relationship 

IV. Experiment 

1. Detailed experimental condition 

1-1. Dimensionality reduction 

Since the robotic arm system used in this study has 9 

DOF and 26 McKibben actuators, a naïve control 

strategy could suffer from a curse of dimensionality. To 

reduce the redundant dimensions efficiently, we 

performed the dimensionality reduction in advance 

[4][5]. In particular, we used principal component 

analysis (PCA). Figure 2 shows the cumulative 

contribution rate against the number of PC dimensions 

when the robotic arm was randomly controlled. In this 

study, the state 
t

s  is reduced to a four-dimensional 

vector '
t

s , so that the cumulative contribution rate is 

0.997.  
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Fig.2. Dimensionality reduction by PCA 

  

To avoid the extra complexity in controlling the 

robotic arm, only two McKibben actuators out of 26 

McKibben actuators were controlled dynamically; the 

target air pressures of these two actuators were estimated 

by NGnet, and those of the rest of the McKibben 

actuators were fixed so that they maintain some stiffness. 

The two dynamically-controlled McKibben actuators 

were chosen heuristically after confirming they can lift 

the hand of the robotic arm up and down. The internal air 

pressure 
t

P  is also reduced to such a two-dimensional 

vector that represents the internal air pressures of the two 

dynamically-controlled actuators. 

1-2. Imitation phase 

The exemplary trajectories were generated by 

moving the robotic arm manually by a human tutor. The 

tutor manipulated the robotic arm like handshake gesture. 

The exemplary trajectories consisted of 250 time points 

in total, including about 12 handshake motions, each of 

which had an approximately same period. Figure 3 

shows a picture when the human tutor directly 

manipulated the robotic arm so that it imitates the 

handshake gesture. 

 

 

Fig.3. Human teaches the robot 

1-3. Free control phase 

In the free control phase, two periodic target air 

pressures were given to the two dynamically-controlled 

McKibben actuators. Each target air pressure was 

generated by a single sin function, but the periodicities of 

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 284



these sin functions were made to be different with each 

other so that they did not synchronize and the wide 

variety of the states was realized. 40,000 data points were 

collected at the sampling frequency of 200Hz, and used 

to train the inverse model (NGnet). 

To determine the number of components of the 

NGnet, M in eq. (2), we performed “Ten-fold cross 

validation” [6]. Figure 4 shows the result. Since the 

cross-validation error decreases as M increases for these 

M values, we set 30M = ; note that the computation cost 

becomes too much if the number of components is larger 

than 30.  
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Fig.4. Ten-fold cross-validation 

 

Figure 5 depicts the information flow of our contr

ol system. 
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Fig.5. Information flow in our scheme 

2. Results of the experiment 

Figures 6 and 7 show the trajectories of the first and 

the second principal components of the states, 

respectively, when the trained robotic arm reproduces the 

handshake motions in the real-time control. The blue line 

is an exemplary trajectory, and the red and green lines are 

the trajectories realized by our control system before and 

after the training, respectively. 

 As can be seen in the figure, the robotic arm 

successfully reproduced a smooth and periodic trajectory 

after the training. In accordance with the figure, we 

visually confirmed the robotic arm performed a natural 

handshake gesture. 
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Fig.6. Trajectory of the first PC  
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Fig.７. Trajectory of the second PC 

ⅦⅦⅦⅦ. Conclusion 

In this study, we propose to employ machine 

learning-based regressors to perform a real-time motion 

planning and to solve the inverse kinematics of the robot. 

The real-time motion planning (forward model) enabled 

the robotic arm to reproduce a natural handshake gesture 

as the human tutor taught and the learning of the inverse 

kinematics (inverse model) enabled real-time computing 

of the control input. It is expected that the proposed 

framework is applicable to other robots, and to perform 

other motions, since our framework is not task-specific 

but general enough. 
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