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Abstract: We study a simple two-link model based on Passive Dynamic Walking which can walk on the level ground. It 
is powered by extending and shortening the telescopic stance-leg. Through the simulation of an easy equivalent 
instantaneous model, we find that the stance-leg actuation is a way to compensate for the lost energy at the collision. It 
has stable cyclic walking gait. Besides, the model has mechanical energy feedback. 
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I. INTRODUCTION 

In the early 1990s, McGeer pioneered Passive 
Dynamic Walking (PDW) robots that can walk down on 
shallow slopes without actuation and control [1]. This 
passive robot has a gait which is very natural and 
energy-efficient. The PDW concept shows us that 
walking can be sustained only by gravity. These passive 
robots must walk on a slope which provides a source of 
energy to compensate for the lost energy at the inelastic 
collision with floor. However, it is impossible to restore 
energy by gravity on level ground. So it is important for 
a robot to restore the lost kinetic energy through other 
approaches.  

When McGeer proposed the PDW, he also put 
forward some ways to make passive walkers walk on 
level ground with active sources which have been 
realized by the followers [2]. These applications 
compensate for the lost energy with either kinetic 
energy or potential energy. Recently, Asano and Luo et 
al propose a parametric excitation approach which is a 
principle to increase the amplitude of vibration by 
swinging [3]. They demonstrate that the mechanical 
energy compensation is a good way to achieve energy-
efficient and high-speed gait. The Robots lab in 
Automation Department in Tsinghua University 
introduced the “virtual slope walking” that compensates 
for lost energy through extending the stance leg and 
shortening the swing leg.  

In this paper, we propose another way to compensate 
for the lost energy with mechanical energy. The model 
we discuss here has telescopic actuators on the legs. The 
system’s energy is increased through up-and-down 
motion of the mass in the hip by the stance leg’s 
extension and shortening. It is hard to study the model 

analytically when the leg’s length is in the course of 
changing. But through numerical simulations we can 
find an equivalent place in the middle of the process of 
extension where the leg extends instantaneously. So 
does in the process of shortening. Then we can study 
this equivalent model which is easy to analyse under the 
conservation of angular of momentum. 

This paper is organized as follows. In section Ⅱ, the 
model with telescopic legs and its parameters are 
introduced. In Section III, the walking map is presented 
using Lagrange Equation. In section IV, we find an easy 
equivalent model. In section V, the analysis of  this 
equivalent model is conducted to clarify the existence of 
the fixed point and its stability. Finally, in section VI, 
we study the mechanical energy of this model. 

II. THE MODEL 

The model in this paper is a simplified model with 
only one mass m in the hip and two massless telescopic 
legs connected to the hip. As shown in Fig. 1(a). The 
other parameters and the whole walking step are shown 
in the Fig. 1(b). θ is clockwise angle of the stance leg 
with respect to the vertical, ω is the angular velocity of 
the stance leg and φ0 is the counter clockwise inter-leg 
angle. A step starts when the prior swing leg has just 
made contact with the ground and the prior stance leg is 
ready to leave the ground. At this instant both legs have 
equal length rs. The new stance leg begins to swing 
freely. When it gets to a key position where we have 
θ=θII, it begins to extend until its length is equals to re. 
We take this instant as another key position where θ=θIII. 
Here we define leg length ratio β= rs / re. Note that the 
velocity along the direction of the leg is zero in these 
two positions. After its length reaches the maximum  
value re, it begins to shorten to rs at the key position 
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where θ=θIV. The velocity along the direction of leg is 
also zero here. Finally, it swings freely until it strikes 
the floor, namely the instant V. Here we consider the 
collision as an inelastic one (no slip and no bounce). 
After the collision, the swing leg sticks to the ground 
and the stance leg is about to leave the ground. The 
transformation of the two legs is the end of one walking 
step. 
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Fig.1. Model and key inst s in one walking step 

III. THE WALKING MAP 

A walki ered as a 
Poi

namic equations, we create 
a c

o the Lagrange Equation, we have the 
dyn

ant
 

ng step in the model is consid
ncare map or stride function [1], which consists of 

the dynamic function in swing phases and the strike 
function at collision. We choose the instant after 
collision as the Poincare section. Limit cycles are the 
fixed points of the walking map. 

1. Dynamic Equations 
In order to obtain the dy
oordinates where the x-axis is along horizontal 

direction and y-axis is along the vertical direction with 
the origin in the stance foot contact point. In this system, 
the zero potential energy plane is the horizontal plane 
on the ground. 

According t
amic equation in free swing phases I to II, IV to V. 

 ( ) sin ( )
s

gt t
r

θ θ=&&                 (1) 

We rescale time by 
e

g trτ = , (1) is rewritten as 

 1( ) sin ( )θ τ θ
β

=&&  τ                (2) 

Using the Lagrange Equation, we can also obtain the 
dynamic equation in the stance leg extension and 
shortening phase II to IV. Notice that the length r(τ) is a 
variable parameter when in the process of extension and 
shortening.  

sin ( ) 2( ) ( ) ( )
( ) ( )

er r
r r
θ τ

θ τ τ
τ τ

= − θ τ&&         (3) 

2. Transition in Inelastic Collision 
In the collision, the geometric condition is m

)

&&

et.  

     0( 1) ( ( )n nθ ϕ θ+ = − −Ⅰ Ⅴ            (4) 
nd 

there is 
conservation of angular m

We assume the collision occurs instantaneously a
no double support. According to the 

omentum, the new stance leg 
angular velocity is determined by 

0( 1) ( )cos( )n nω ω ϕ+ =Ⅰ Ⅴ            (5) 
(2) to (5) are the walking map f of this model. Note 

that the Poincare section is at the beg
and the 

1. Model 
Bec  and 

tically, we find an equivalent 

**

inning of a step, 
walking map f maps the states in one section to 

the states in the next section. 

IV. THE EQUIVALENT MODEL 

Description 
ause it is difficult to study the extension

shortening process analy
model which extends and shortens instantaneously. This 
equivalent model is shown in Fig. 1(c). 

In this equivalent model, the stance leg extends from 
rs to re instantaneously at the position where θ*

II=θ*
III 

and then shortens instantaneously at the position where 
θ III=θ*

IV. So we have the conservation of angular 
momentum about the stance foot contact point, which 
leads to a discontinuous change in the angular velocity 
of the stance leg. From II* to III*, we have 

 2 *ω β ω=*
Ⅲ Ⅱ                 (6) 

Similar to the process II* to III*, we can obtain the 
relationship between III** d IV*. an  

 * **
2

1ω ω
β

=
Ⅳ Ⅲ

                (7) 

The equivalence we consider here is from the 
mechanical energy’s point of vie
of e

w. In such a definition 
quivalence, we must make sure the mechanical 

energy in instant II* equals to the mechanical energy in 
instant II and the mechanical energy in instant III* 
equals to that of instant III. The same goes for the 
shortening process. Here we only discuss how to get the 
position II* according to II and III, which can be applied 
to the position IV*.  

From the mechanical energy equality, we have the 
following two equations:  

       
* 2 *1cos cos

2 2
1ω β θ ω β θ+ = +

Ⅱ Ⅱ

2
Ⅱ Ⅱ          (8) 

 * 2 *1 1cos cos
2 2

       ω θ ω θ+ = +
ⅢⅢ Ⅲ Ⅲ (9) 

that the kinetic energy has been rescaled by the 
dimensionless time τ. 

2

         
Note 
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From ( ion 
angle θ*  can be re

6), (8) and (9), the instantaneously extens
presented as: II

( )4 31 cos cos
2arccos 31

ω β ω θ β θ
θ

⎛ ⎞− + −⎜
= ⎜
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Ⅲ

*
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Using the same method, we can also get θ* . IV

( )4 3

3

1 cos cos
2arccos

1

ω β ω θ β θ
θ

β

⎛ ⎞− + −⎜ ⎟
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−⎜ ⎟⎜ ⎟
⎝ ⎠

2 2
Ⅳ Ⅲ Ⅳ Ⅲ

*
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The free swing phases and the collision rules are the 
same in these two models. 

2. The Equivalent Walking Map 

s

n phase from II* to III*, free 
om III* to III**, 

ins

In the equivalent model, the walking step can be 
divided as: free swing phase with leg length r  from I to 
II*, instantaneously extensio
swing phase with leg length re fr

tantaneously shortening phase from III** to IV*, and 
free swing phase with leg length rs from IV* to V. 

The dynamic function from III* to III** is 
 ( ) sin ( )θ τ θ τ=&&                 (12) 

So (2), (6), (7) and (12) are the walking map in this 
equivalent model.  

According to this function, the simula iont  results are 
shown in Fig. 2. The red dotted
the

le of the model in Fig. 1(b). These 
two

nd the cyclic gait of this model, we 
n  
fixed point is an initial state which maps to itself in the 

e in this model is the stance 
leg

  line is the limit cycle of 
 equivalent model in Fig. 1(c) while the black solid 

line is the limit cyc
 limit cycles are the same expect in the extension 

and shortening phases, so we can say that these two 
models’ extension and shortening have the equivalent 
effect. 

V. ANALYSIS OF EQUIVALENT MODEL 

1. Finding Fixed Point 
In order to fi

eed to find the fixed point of the walking map. The

Poincare section. The stat
 angle θI and stance leg rate ωI. Since θ is a constant 

that depends on the inter-leg angle φ0 in the instant after 
collision, there leaves only one state variable ωI in 
Poincare section. 

In free swing phases, we have the mechanical 
energy conservation as follows:  
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Fig.2. Limit cycles in phase space 

              (13) 

Together with the discontinuo
leg angular velocity in instantaneous extension, 
sho

*E E E⎧ = =
⎪
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E E

E E E
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us changes of stance 

rtening and collision, we can obtain 
2 2( 1) ( ( )n f nω ω+ =Ⅰ Ⅰ                         (14) 

2 3
2 2 02cos (1 )

cos ( )n n
ϕ β

ϕ ω
−

= + * *
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To make it easy to analyse the fixed point, we take a 
new state variable 

4 [cos ( ) cos ( )]nθ θ
β

− Ⅳ  

2q ω= Ⅰ into consideration, then 
according to the definition of a fixed point 

    

 ( )f fq f q=                 (15) 
We have the analytical expression of fixed point.  

 
2 32cos (1 )[cos cosf

2

]
)

0
4 (1 cos

q
0

ϕ β θ θ− −* *

β
=

−

n 
te it with the parameters’ values of the mo

the equivalent model is much easier to study. 

ould like 
t. The stable fixed 

nt. The eigenvalues of the Jacobian 
ma

ϕ
Ⅱ Ⅳ   (16) 

   
Once we have the expression of fixed point, we ca

calcula del. So 

2. Stability of Fixed Point 
A. Local Stability 

Once we have obtained a fixed point, we w
to know whether it is stable or no
point is what we wa

trix of the walking map can determine the local 
stability of the fixed point. If all eigenvalues are inside 
the unit cycle, which means a small disturbance will 
decay over time, then the fixed point is asymptotical 
stable, else if there is one eigenvalue outside the unit 
cycle, the fixed point is unstable. 

From the analytical expression of fixed point (14), 
we can calculate the eigenvalue of Jacobian matrix.  

 2f
0cosfq

λ ϕ∂
= =
∂

               (17) 
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A 0cos 1ccording to (5), we have ϕ < , so the fixed 
 be confirmed by point is asymptotical stable. This can

the  in Fig. 3

matrix can 
 stability. Wisse et al propose the 

bas

 simulation results, as shown . It shows that 
an initial state near fixed point will always converge to 
the fixed point after several cycles. But this initial state 
cannot be too far away from the fixed point. 
B. Global Stability 

However, the eigenvalun of Jacobian 
only reflect the local

in of attraction to analyze the global stability [4]. 
The basin of attraction is an area where the initial states 
can lead to a stable walking instead of falling. Fig. 4 
shows the basin of attraction with respect to different β. 
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Fig.3. The convergence towards limit cycle 
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Fig.4. Basin of attraction 

 

VI. GY 

The m  of 
kinetic en en by 

MECHANICAL ENER

odel’s total mechanical energy is the sum
ergy and potential energy. It can be giv

  
2 21( ) ( ) cos

2i i i i iE n m t r mgrθ θ= +&          (18) 

Note that the time has been rescaled a
is different in different phases. 

gy changes during the 
ins

                (19) 

nd leg length r 

We have energy conservation during free swing 
phases. That is (13). The ener

tantaneously extension, instantaneously shortening 
and collision. For a fixed point, the complementary 
energy Ec is equal to the lost energy Er. We know the 
energy is lost during collision, so it must be increased 
from instant II* to instant IV*. They can be expressed as 

According to the relationships about stance leg’s 
angle, angular velocity and energy, we can obtain 

cE E E= −* *
Ⅳ Ⅱ  

3

)g 2e
1[cos cos ](cE m r βθ θ −

= −* *
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2
β ϕ ω θ θ −

= − + − −* *
Ⅰ Ⅱ Ⅳ ϕ  

                            
From (20), we can see that the complementary 

energy only depends on the θ*
II, θ*

IV, β and re. These 

com

d bipedal model 
walking on level g roven that a 
passive dynami lk down on a 
sha

90, 9(2):62-68  
[2] McGeer T, St  of Two-Dimens
ional Bipedal Walking. eport CSS-IS TR

nt and High-

 

β

              (21) 

parameters are constant in the model, so the 
plementary energy is the same for different initial 

state. The lost energy depends on not only the above 
parameters, but also on the initial state ω2

I. This means 
that there exists feedback in this model. When the initial 
state is larger than fixed point, the lost energy is larger 
than the complementary energy which makes the initial 
state in the next step smaller. Finally it will converge to 
the fixed point when the lost energy is equal to the 
complementary energy. When the initial state is smaller 
than fixed point, it will converge to the fixed point 
because the lost energy is smaller than the 
complementary energy. The energy feedback can also 
illustrate that the fixed point is stable. 

VII. CONCLUSION 

This paper has proposed a powere
round. It has been p

c walking model can wa
llow slope without actuation or control because of 

the lost energy is recovered from the descent of center 
of mass. From this point of view, we study the up-and-
down motion of the hip mass on stance-leg actuation. 
The simulation results of the model and its equivalent 
model show that there exist stable periodical gait. When 
the model has appropriate structure parameters, the 
complementary energy is a constant, which means there 
exist energy feedback. 
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