

Countering Asymmetric Situations with
Distributed Artificial Life and Robotics Approach

Peter Sapaty

Institute of Mathematical Machines and Systems, National Academy of Sciences
Glushkova Ave 42, 03187 Kiev, Ukraine, sapaty@immsp.kiev.ua

Masanori Sugisaka

Department of Mechanical and Electrical Engineering, Nippon Bunri University
1727 Oaza Itiki, Oita, 870-0397, Japan, ms@alife-robotics.co.jp

Abstract

A novel control model and technology, creating distributed
virtual systems with artificial life features, is discussed.
They become capable of runtime reshaping, adapting to
unknown environments, and pursuing global goals. The
approach is based on known holistic and gestalt principles,
where the whole is first and parts are treated in the context
of the whole. Distributed Scenario Language, DSL, the core
of the approach, and its spatial interpretation in networked
systems will be revealed. Mission scenarios in DSL,
covering, integrating, tasking, and controlling distributed
resources (robotic swarms including), can effectively fight
world disasters and crises.

Keywords: irregular situations, integrity, overoperability,
distributed scenario language, networked interpretation,
smart structures, self-recovery, artificial life and robotics.

1 Introduction

The world dynamics is increasing due to global warming,

numerous natural and manmade disasters, military conflicts,
and international terrorism. New approaches to organization
of distributed systems, especially for solving irregular and
“asymmetric” problems, are needed [1]. The approach
offered, symbolically called overoperability, allows us to
create, modify, analyze, process, simulate, and manage any
distributed systems by establishing advanced global control
over them [2].

Within the overoperability philosophy, an integral
mission scenario expressed in a special wave-like formalism
(see Fig. 1a) is executed in a parallel manner by
dynamically networked universal control modules U
embedded into distributed worlds (Fig. 1b). This scenario,
written in a special high-level Distributed Scenario language
(DSL), can start from any unit and dynamically cover the
whole system, setting its internal organization, and orienting
behavior [2,3].

a)
b)

Figure 1. The overoperability paradigm.

During the scenario evolution, any operations can be

accomplished in the distributed world, causing, if
needed, movement of code and equipment and creation
and maintenance of physical and virtual infrastructures
supporting the missions. Different spatial scenarios can
cooperate or compete in the networked space (as in Fig.
1b), allowing for effective distributed simulation of
complex dynamic systems or their live management and
control, with any combination of the two.

This paradigm has been extensively studied, discussed,
and published elsewhere [4-6], and here we will be
concentrating only on the latest updated version of DSL
and its application for the creation of smart distributed
structures, with their use in irregular situations.

2 DSL: The Scenario Language

DSL allows us to directly express semantics of problems
to be solved in distributed worlds and, if needed, implicit
or explicit system behavior to solve these problems.

2.1 DSL Key Features

The language operates with:
• Virtual World (VW), which is discrete and consists

of nodes and links connecting the nodes.
• Continuous Physical World (PW), points in which are

accessible by physical coordinates.
• Virtual-Physical World (VPW), as an extension of

VW, where nodes additionally associate with
coordinates in PW.

Other key DSL features include:
• A scenario in it develops as a transition between sets

of progress points (props), as parallel waves.
• Starting from a prop, an action may result in one or

more props (the resultant set of props may include the
starting prop too).

• Each prop has a resulting value (which can be
multiple) and a resulting state, being one of the four:
thru (full success, also allowing us to proceed
further), done (success with planned termination), fail
(regular failure, with local termination), and abort
(emergency failure, terminating the whole distributed
process, associated with other props too).

• Different actions may evolve independently or
interdependently from the same prop, forming
altogether the resultant set of props.

• Actions may also spatially succeed each other, with
new ones applied in parallel from all props reached
by the preceding actions.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 416

• Elementary operations can directly use local or remote

values of props obtained from other actions (the latter
including the whole scenarios).

• Elementary operations can result in open values that can
be used by other operations in an expression or by the
following operations in a sequence. They can also be
directly assigned to local or remote variables (an access
to which may invoke scenarios of any complexity).

• Any prop can associate with a node in VW or a position
in PW, or both.

• Any number of props can be simultaneously linked with
the same points of the worlds.

• Staying with world points (virtual, physical, combined)
it is possible to access and update local data in them.

• DSL can be used as a universal programming language.

2.2 DSL Syntax and Main Constructs

DSL has a recursive syntax, which on top level may be
expressed as follows (programs are called waves, braces
show repetition, and vertical bar delimits alternatives):

wave phenomenon | rule ({ wave , })
phenomenon constant | variable | special
constant information | matter
variable heritable | frontal | environmental | nodal
rule movement | creation | elimination |

 echoing | fusion | verification | assignment |
 construction | advancing | branching |
 transference| timing | granting | type | usage

The basic construct, rule, can represent any definition,
action or decision, being for example:
• elementary arithmetic, string or logic operation;
• hop in a physical, virtual, or combined space;
• hierarchical fusion and return of (remote) data;
• distributed control, both sequential and parallel;
• a variety of special contexts for navigation in space,

influencing operations and decisions;
• type or sense of a value, or its chosen usage, guiding

automatic interpretation.
There are different types of variables in DSL:
• Heritable variables – these are starting in a prop and

serving all subsequent props, which can share them in
both read & write operations.

• Frontal variables – are an individual and exclusive
prop’s property (not shared with other props), being
transferred between the consecutive props, and
replicated if from a single prop a number of props
emerge.

• Environmental variables – are accessing different
elements of physical and virtual words when navigating
them, also a variety of parameters of the internal world
of DSL interpreter.

• Nodal variables – allow us to attach an individual
temporary property to VW and VPW nodes; they can
be accessed and shared by any props associated with
these nodes.

These variables, especially when used together, allow us
to create efficient spatial algorithms working between
components of distributed systems rather than in them.

Elementary examples in DSL may look like follows.
• assignment of a sum of values to a variable:
assign(Result, add(27,33,55.6))

• parallel hop into two given physical locations:
move(location(x5,y8), location(x1,y3))

• creating isolated node Peter in a virtual space:
create(node(Peter))

• extending the previous single-node network with a
new link-node pair (father of, Alex):

 hop(Peter); create(+fatherof, Alex))
Traditional abbreviations of operations and delimiters

can be used too, as in further examples throughout this
text, to shorten the DSL programs.

3 Distributed DSL Interpreter

The DSL interpreter ([6], Fig. 2), with the following
features, has been prototyped on different platforms.

O
th

er
 In

te
rp

re
te

rs

.
Figure 2. Organization of DSL interpreter.

• It consists of a number of specialized modules

working in parallel and handling and sharing specific
data structures supporting persistent virtual worlds
and temporary hierarchical control mechanisms.

• The whole network of the interpreters can be mobile
and open, changing at runtime the number of nodes
and communication structure between them.

• The heart of the distributed interpreter is its spatial
track system, with its parts kept in the Track Forest
memory of local interpreters; these being logically
interlinked with such parts in other interpreter copies,
forming altogether indivisible space coverage. This
allows for hierarchical command and control and
remote data and code access, with high integrity of
parallel distributed solutions.

• Copies of the interpreter can be concealed, say, in
hostile systems, allowing us to impact them globally.

The dynamically crated track trees, spanning the
systems in which DSL scenarios evolve, are used for
supporting spatial variables and echoing and merging
different types of control states and remote data, being
self-optimized in the echo mode. They also route further
waves to the positions in physical, virtual, or combined
spaces reached by the previous waves, uniting them with
the frontal variables delivered there by preceding waves.

4 Operating with Distributed Structures

Network creation. To create the virtual network of Fig.
3a in a distributed environment, and in a fully distributed
way, the following DSL program will be sufficient
(expressing the directed graph template of Fig. 3b based
on depth-first spanning tree of the network, with all links

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 417

named r, for simplicity):
create(hop(a); r#b; r#c; r##a,(r#d; r##b))

Starting with node a, it gradually self-evolves in a
distributed space while creating the network topology
needed (in the navigation mode shown in Fig. 1b).

a

c

b

d a b c dStart

a) b)

Figure 3. Distributed creation of a network structure.

Network modification. Another DSL scenario can make

any modification of this network, also in a fully distributed
and parallel way, say, substituting all existing triangles in
the network with stars (naming additional central star nodes
with combination of fringe node names), as in Fig. 4a-b:
hop(allnodes); F=C; twice(#; P>A; F&=C);
#; C==F:1; create(hop(unite(F)); r##F);
remove(##F)

a

c

b

d a

c

b

dabc bcd

a) b)
Figure 4. Distributed structure modification.

Network self-recovery. Applying another special DSL

scenario to any network can make it capable of self-
recovery after any indiscriminate damages of nodes and
links, where missing elements can be restored by remaining
neighboring nodes. The restored nodes can, in their turn,
restore the other nodes (including the ones that restored
them), and so on. A simplified example of such a program
converting the whole network into a self-regenerating live
creature may be as follows (the lost nodes a and d and links
to them are restored by nodes b and c, as in Fig. 5a-b).
 Fp={repeat(split(diff(Fi,(#; C))); Fn=V;
 [or((direct#Fn; create(r##P)),
 (create(r#Fn); Fi=(#; C); run(Fp)))])};
 hop(allnodes); Fi=(#; C); run(Fp)

a

c

b

d a

c

b

d

Link-node
recovery

Link
recovery

Link-node
recovery

Link
recovery

a) b)

Figure 5. Distributed network self-recovery.

Distributed topology self-analysis. DSL allows us to
directly analyze and process distributed topologies in a
parallel way. For example, to find the weakest nodes in a
network (like articulation points, Fig. 6a), which when
removed split the network into disjoint parts, we only need
the following program (resulting in articulation node d).
 hop(allnodes); ID=C;
 and((random(#); repeat(firstcome(#))),
 (firstcome(#)), out(C))

a) b)
Figure 6. Distributed discovery of topological features.

Cliques (or fully connected sub-graphs of a graph, as

in Fig. 6b), on the contrary, may be considered as
strongest parts of a system. They can be found in parallel
by the following program, resulting for the network in
Fig. 6b in cliques: (a,b,c,d),(c,d,e),(d,e,f).
hop(allnodes); Fc=C;
repeat(#; notbelong(C, Fc);
 and(done(andparallel(#Fc)),
 or(done(B>C), Fc&=C))); out(Fc)

More on distributed topology operations are in [4,5].

5 Researched Applications

Overlaying the obtained integral virtual solutions onto
networked hardware, which may be heterogeneous and
open, allows us to work in the following modes:
• Simulation mode, where using computer networks

for parallel simulation of large systems provides
realistic results, both functional and behavioral.

• Live control mode, causing and guiding the needed
hardware behavior in solving complex problems.

• Combined mode, where distributed simulation
serves as intelligent look-ahead part of live control.

Collective Robotics. Installing the interpreter in mobile
robots of different types (as in Fig. 7) allows us to
organize effective group solutions (including any
swarming) in distributed physical spaces.

Figure 7. Grouping unmanned vehicles.

A simple example task here may be formulated as:
Go to physical locations of the disaster zone with

coordinates (50.433, 30.633), (50.417, 30.490), and
(50.467, 30.517). Evaluate damage in each location, find
and transmit the maximum destruction value, together
with exact coordinates of the corresponding location, to
a management center.

The DSL program will be as follows:

transmit(maximum(move((50.433, 30.633),
 (50.417, 30.490), (50.467, 30.517));
 append(evaluate(destruction), WHERE)))

Details of automatic implementation of this scenario,
as well as of many others, by different numbers of
mobile robots and at different system levels are
discussed in details elsewhere [7]. Under the technology
developed, loose robotic swarming may be combined
with strong hierarchical control to make quick global

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 418

solutions and withstand unexpected situations.

Terrorism and Piracy Fight. No secret that mightiest
world armies with classical organizations are often
powerless against poorly armed terrorists and pirates, who
are using flexible asymmetric tactics (see in Fig. 8 the 2009
world piracy map with possible information leakages,
forming altogether a sophisticated distributed network). The
ideology and technology discussed here can dynamically
organize the whole world to withstand such activities,
offering runtime spatial solutions--from global network
search to managing unmanned swarms for asymmetric
responses to asymmetric attacks [3].

Figure 8. Global piracy fight.

Other applications. These are presented, discussed and
published at numerous world events--from philosophy [8] to
information technologies [1] to artificial life and robotics [9]
to sensor networks [10] to crisis management [11] to
defense [12-14]. Some of these researched applications are
shown in Fig. 9.

Figure 9. Other researched applications.

7 Conclusions

A distributed processing and control model and
technology has been discussed, allowing us to obtain
integral albeit fully distributed systems with artificial life
features. These systems are capable of self-reshaping at
runtime, changing networked structures, and adapting to
unknown environments. The approach is based on holistic
and gestalt philosophical principles, where the whole is first,
greater than parts, and the parts are treated in the context of
the whole rather than vice versa, as usual.

The approach, challenging conventional atomistic and
agent-based philosophies in the system design and
management, puts the artificial life concept, empowered
with advanced distributed robotics, to the forefront of fight
with numerous world disasters and crises.

Providing smooth transition from simulated to live
solutions, with the watershed gradually shifting from the
former to the latter, it can also support a unified
conversion from manned to fully unmanned advanced
systems within the same organizational concept.

Acknowledgments. Special thanks to the Alexander

von Humboldt Foundation (AvH) in Germany and the
Japanese Society for the Promotion of Science (JSPS)
who supported (both morally and financially) these ideas,
research, implementation, and related international
cooperation throughout the years of their development.

References

[1] Sapaty, P. S., “Meeting the World Challenges: From

Philosophy to Information Technology to Applications”,
Keynote lecture, Proc. 6th International Conference in
Control, Automation and Robotics ICINCO 2009, Vol.1,
Milan, Italy, IS-31--IS-43, 2009.

[2] Sapaty, P., “The Over-operability Organization of
Distributed Dynamic Systems for Asymmetric
Operations”, Proc. IMA Conference on Mathematics in
Defence, Farnborough, UK, 2009.

[3] Sapaty, P., “Gestalt-based Integrity of Distributed
Networked Systems”, SPIE Europe Security + Defence,
bcc Berliner Congress Centre, Berlin Germany (2009).

[4] Sapaty, P. S., Mobile Processing in Distributed and
Open Environments, John Wiley & Sons, 1999.

[5] Sapaty, P. S., Ruling Distributed Dynamic Worlds, John
Wiley & Sons, New York, 2005.

[6] Sapaty, P., A distributed Processing System, European
patent No. 0389655, European Patent Office, 1993.

[7] Sapaty, P. S., “Providing Spatial Integrity for
Distributed Unmanned Systems”, Proc. 6th
International Conference in Control, Automation and
Robotics ICINCO 2009. Milan, Italy, 2009.

[8] P. Sapaty, “Gestalt-Based Ideology and Technology for
Spatial Control of Distributed Dynamic Systems”,
International Gestalt Theory Congress, 16th Scientific
Convention of the GTA, University of Osnabrück,
Germany, March 26 - 29, 2009.

[9] P. Sapaty, K.-D. Kuhnert, M. Sugisaka, R. Finkelstein,
“Developing High-Level Management Facilities for
Distributed Unmanned Systems”, Proc. Fourteenth
International Symposium on Artificial Life and
Robotics (AROB 14th’09), B-Con Plaza, Beppu, Oita,
Japan, Feb. 5-7, 2009.

[10] Sapaty, P., “Intelligent Management of Distributed
Sensor Networks”, In Sensors, and Command, Control,
Communications, and Intelligence (C3I) Technologies
for Homeland Security and Homeland Defense VI, Proc.
of SPIE, Vol. 6538, 653812, 2007.

[11] Sapaty, P., Sugisaka, M., Finkelstein, R., Delgado-Frias,
J., Mirenkov, N., “Advanced IT Support of Crisis Relief
Missions”, Journal of Emergency Management, Vol.4,
No.4, 2006.

[12] Sapaty, P., Morozov, A., Sugisaka, M., "DEW in a
Network Enabled Environment", Proc. International
conference Directed Energy Weapons, Le Meridien
Piccadilly, London, UK, 2007.

[13] Sapaty, P., “Grasping the Whole by Spatial Intelligence:
A higher level for Distributed Avionics”, Proc.
International Conference Military Avionics 2008, Cafe
Royal, London, UK, 2008.

[14] Sapaty, P., “Distributed Capability for Battlespace
Dominance”, In Electronic Warfare 2009 Conference &
Exhibition, Novotel London West Hotel & Conference
Center, London, 2009.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 419

