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Abstract 
 

A novel control model and technology, creating distributed 
virtual systems with artificial life features, is discussed. 
They become capable of runtime reshaping, adapting to 
unknown environments, and pursuing global goals. The 
approach is based on known holistic and gestalt principles, 
where the whole is first and parts are treated in the context 
of the whole. Distributed Scenario Language, DSL, the core 
of the approach, and its spatial interpretation in networked 
systems will be revealed. Mission scenarios in DSL, 
covering, integrating, tasking, and controlling distributed 
resources (robotic swarms including), can effectively fight 
world disasters and crises. 
 

Keywords: irregular situations, integrity, overoperability, 
distributed scenario language, networked interpretation, 
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1  Introduction 

 
The world dynamics is increasing due to global warming, 

numerous natural and manmade disasters, military conflicts, 
and international terrorism. New approaches to organization 
of distributed systems, especially for solving irregular and 
“asymmetric” problems, are needed [1]. The approach 
offered, symbolically called overoperability, allows us to 
create, modify, analyze, process, simulate, and manage any 
distributed systems by establishing advanced global control 
over them [2].  

Within the overoperability philosophy, an integral 
mission scenario expressed in a special wave-like formalism 
(see Fig. 1a) is executed in a parallel manner by 
dynamically networked universal control modules U 
embedded into distributed worlds (Fig. 1b). This scenario, 
written in a special high-level Distributed Scenario language 
(DSL), can start from any unit and dynamically cover the 
whole system, setting its internal organization, and orienting 
behavior [2,3].  

 

a)
b)

Figure 1. The overoperability paradigm. 
 

During the scenario evolution, any operations can be 

accomplished in the distributed world, causing, if 
needed, movement of code and equipment and creation 
and maintenance of physical and virtual infrastructures 
supporting the missions. Different spatial scenarios can 
cooperate or compete in the networked space (as in Fig. 
1b), allowing for effective distributed simulation of 
complex dynamic systems or their live management and 
control, with any combination of the two. 

This paradigm has been extensively studied, discussed, 
and published elsewhere [4-6], and here we will be 
concentrating only on the latest updated version of DSL 
and its application for the creation of smart distributed 
structures, with their use in irregular situations. 
 
 

2  DSL: The Scenario Language 
 
DSL allows us to directly express semantics of problems 
to be solved in distributed worlds and, if needed, implicit 
or explicit system behavior to solve these problems.  
 
2.1 DSL Key Features 
 

The language operates with: 
• Virtual World (VW), which is discrete and consists 

of nodes and links connecting the nodes.  
• Continuous Physical World (PW), points in which are 

accessible by physical coordinates.  
• Virtual-Physical World (VPW), as an extension of 

VW, where nodes additionally associate with 
coordinates in PW.  

Other key DSL features include: 
• A scenario in it develops as a transition between sets 

of progress points (props), as parallel waves. 
• Starting from a prop, an action may result in one or 

more props (the resultant set of props may include the 
starting prop too).  

• Each prop has a resulting value (which can be 
multiple) and a resulting state, being one of the four: 
thru (full success, also allowing us to proceed 
further), done (success with planned termination), fail 
(regular failure, with local termination), and abort 
(emergency failure, terminating the whole distributed 
process, associated with other props too). 

• Different actions may evolve independently or 
interdependently from the same prop, forming 
altogether the resultant set of props.  

• Actions may also spatially succeed each other, with 
new ones applied in parallel from all props reached 
by the preceding actions. 
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• Elementary operations can directly use local or remote 

values of props obtained from other actions (the latter 
including the whole scenarios).   

• Elementary operations can result in open values that can 
be used by other operations in an expression or by the 
following operations in a sequence. They can also be 
directly assigned to local or remote variables (an access 
to which may invoke scenarios of any complexity). 

• Any prop can associate with a node in VW or a position 
in PW, or both.  

• Any number of props can be simultaneously linked with 
the same points of the worlds. 

• Staying with world points (virtual, physical, combined) 
it is possible to access and update local data in them. 

• DSL can be used as a universal programming language. 
 
2.2  DSL Syntax and Main Constructs 
 

DSL has a recursive syntax, which on top level may be 
expressed as follows (programs are called waves, braces 
show repetition, and vertical bar delimits alternatives): 

wave             phenomenon |  rule ( { wave , } ) 
phenomenon  constant | variable | special 
constant         information | matter  
variable          heritable | frontal | environmental | nodal 
rule             movement | creation | elimination | 

               echoing | fusion | verification | assignment |   
               construction | advancing | branching |    
               transference| timing | granting | type | usage 

The basic construct, rule, can represent any definition, 
action or decision, being for example:  
• elementary arithmetic, string or logic operation; 
• hop in a physical, virtual, or combined space; 
• hierarchical fusion and return of (remote) data; 
• distributed control, both sequential and parallel; 
• a variety of special contexts for navigation in space, 

influencing operations and decisions;  
• type or sense of a value, or its chosen usage, guiding 

automatic interpretation. 
There are different types of variables in DSL: 
• Heritable variables – these are starting in a prop and 

serving all subsequent props, which can share them in 
both read & write operations. 

• Frontal variables – are an individual and exclusive 
prop’s property (not shared with other props), being 
transferred between the consecutive props, and 
replicated if from a single prop a number of props 
emerge.  

• Environmental variables – are accessing different 
elements of physical and virtual words when navigating 
them, also a variety of parameters of the internal world 
of DSL interpreter. 

• Nodal variables – allow us to attach an individual 
temporary property to VW and VPW nodes; they can 
be accessed and shared by any props associated with 
these nodes.  

These variables, especially when used together, allow us 
to create efficient spatial algorithms working between 
components of distributed systems rather than in them. 

Elementary examples in DSL may look like follows. 
• assignment of a sum of values to a variable: 
assign(Result, add(27,33,55.6))  

• parallel hop into two given physical locations:               
move(location(x5,y8), location(x1,y3)) 

• creating isolated node Peter in a virtual space: 
create(node(Peter)) 

• extending the previous single-node network with a 
new link-node pair  (father of, Alex):         

    hop(Peter); create(+fatherof, Alex)) 
Traditional abbreviations of operations and delimiters 

can be used too, as in further examples throughout this 
text, to shorten the DSL programs. 
 
 

3  Distributed DSL Interpreter 
 

The DSL interpreter ([6], Fig. 2), with the following 
features, has been prototyped on different platforms.  
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Figure 2.  Organization of DSL interpreter. 

 
• It consists of a number of specialized modules 

working in parallel and handling and sharing specific 
data structures supporting persistent virtual worlds 
and temporary hierarchical control mechanisms.  

• The whole network of the interpreters can be mobile 
and open, changing at runtime the number of nodes 
and communication structure between them.  

• The heart of the distributed interpreter is its spatial 
track system, with its parts kept in the Track Forest 
memory of local interpreters; these being logically 
interlinked with such parts in other interpreter copies, 
forming altogether indivisible space coverage. This 
allows for hierarchical command and control and 
remote data and code access, with high integrity of 
parallel distributed solutions. 

• Copies of the interpreter can be concealed, say, in 
hostile systems, allowing us to impact them globally.  

The dynamically crated track trees, spanning the 
systems in which DSL scenarios evolve, are used for 
supporting spatial variables and echoing and merging 
different types of control states and remote data, being 
self-optimized in the echo mode. They also route further 
waves to the positions in physical, virtual, or combined 
spaces reached by the previous waves, uniting them with 
the frontal variables delivered there by preceding waves. 
 
 
4  Operating with Distributed Structures 
 

Network creation. To create the virtual network of Fig. 
3a in a distributed environment, and in a fully distributed 
way, the following DSL program will be sufficient 
(expressing the directed graph template of Fig. 3b based 
on depth-first spanning tree of the network, with all links 
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named r, for simplicity): 
create(hop(a); r#b; r#c; r##a,(r#d; r##b)) 

Starting with node a, it gradually self-evolves in a 
distributed space while creating the network topology 
needed (in the navigation mode shown in Fig. 1b). 

a

c

b

d a b c dStart

a) b)

 
Figure 3. Distributed creation of a network structure. 

 
Network modification. Another DSL scenario can make 

any modification of this network, also in a fully distributed 
and parallel way, say, substituting all existing triangles in 
the network with stars (naming additional central star nodes 
with combination of fringe node names), as in Fig. 4a-b: 
hop(allnodes); F=C; twice(#; P>A; F&=C);  
#; C==F:1; create(hop(unite(F)); r##F);  
remove(##F) 

 

a
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d a

c

b

dabc bcd

a) b)  
Figure 4. Distributed structure modification. 

 
Network self-recovery. Applying another special DSL 

scenario to any network can make it capable of self-
recovery after any indiscriminate damages of nodes and 
links, where missing elements can be restored by remaining 
neighboring nodes. The restored nodes can, in their turn, 
restore the other nodes (including the ones that restored 
them), and so on. A simplified example of such a program 
converting the whole network into a self-regenerating live 
creature may be as follows (the lost nodes a and d and links 
to them are restored by nodes b and c, as in Fig. 5a-b). 
 Fp={repeat(split(diff(Fi,(#; C))); Fn=V; 
  [or((direct#Fn; create(r##P)),  
      (create(r#Fn); Fi=(#; C); run(Fp)))])};       
  hop(allnodes); Fi=(#; C); run(Fp) 

a
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recovery

Link 
recovery

Link-node 
recovery

Link 
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a) b)
 

Figure 5. Distributed network self-recovery. 
 

Distributed topology self-analysis. DSL allows us to 
directly analyze and process distributed topologies in a 
parallel way. For example, to find the weakest nodes in a 
network (like articulation points, Fig. 6a), which when 
removed split the network into disjoint parts, we only need 
the following program (resulting in articulation node d). 
  hop(allnodes); ID=C;  
  and((random(#); repeat(firstcome(#))),  
      (firstcome(#)), out(C)) 

a) b)  
Figure 6. Distributed discovery of topological features.  

 
Cliques (or fully connected sub-graphs of a graph, as 

in Fig. 6b), on the contrary, may be considered as 
strongest parts of a system. They can be found in parallel 
by the following program, resulting for the network in 
Fig. 6b in cliques: (a,b,c,d),(c,d,e),(d,e,f). 
hop(allnodes); Fc=C;  
repeat(#; notbelong(C, Fc);  
 and(done(andparallel(#Fc)), 
     or(done(B>C), Fc&=C))); out(Fc) 

More on distributed topology operations are in [4,5]. 
 
5  Researched Applications 
 

Overlaying the obtained integral virtual solutions onto 
networked hardware, which may be heterogeneous and 
open, allows us to work in the following modes: 
• Simulation mode, where using computer networks 

for parallel simulation of large systems provides 
realistic results, both functional and behavioral. 

• Live control mode, causing and guiding the needed 
hardware behavior in solving complex problems.  

• Combined mode, where distributed simulation 
serves as intelligent look-ahead part of live control. 

Collective Robotics. Installing the interpreter in mobile 
robots of different types (as in Fig. 7) allows us to 
organize effective group solutions (including any 
swarming) in distributed physical spaces.  

 

 
Figure 7. Grouping unmanned vehicles. 

 
A simple example task here may be formulated as:  
Go to physical locations of the disaster zone with 

coordinates (50.433, 30.633), (50.417, 30.490), and 
(50.467, 30.517). Evaluate damage in each location, find 
and transmit the maximum destruction value, together 
with exact coordinates of the corresponding location, to 
a management center.  

The DSL program will be as follows: 
 

transmit(maximum(move((50.433, 30.633),   
 (50.417, 30.490), (50.467, 30.517)); 
 append(evaluate(destruction), WHERE))) 
 

Details of automatic implementation of this scenario, 
as well as of many others, by different numbers of 
mobile robots and at different system levels are 
discussed in details elsewhere [7]. Under the technology 
developed, loose robotic swarming may be combined 
with strong hierarchical control to make quick global 
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solutions and withstand unexpected situations. 

Terrorism and Piracy Fight. No secret that mightiest 
world armies with classical organizations are often 
powerless against poorly armed terrorists and pirates, who 
are using flexible asymmetric tactics (see in Fig. 8 the 2009 
world piracy map with possible information leakages, 
forming altogether a sophisticated distributed network). The 
ideology and technology discussed here can dynamically 
organize the whole world to withstand such activities, 
offering runtime spatial solutions--from global network 
search to managing unmanned swarms for asymmetric 
responses to asymmetric attacks [3].  

 

 
 

Figure 8. Global piracy fight. 
 

Other applications. These are presented, discussed and 
published at numerous world events--from philosophy [8] to 
information technologies [1] to artificial life and robotics [9] 
to sensor networks [10] to crisis management [11] to 
defense [12-14]. Some of these researched applications are 
shown in Fig. 9.  

 

 
Figure 9. Other researched applications. 

 
7  Conclusions 
 

A distributed processing and control model and 
technology has been discussed, allowing us to obtain 
integral albeit fully distributed systems with artificial life 
features. These systems are capable of self-reshaping at 
runtime, changing networked structures, and adapting to 
unknown environments. The approach is based on holistic 
and gestalt philosophical principles, where the whole is first, 
greater than parts, and the parts are treated in the context of 
the whole rather than vice versa, as usual.  

The approach, challenging conventional atomistic and 
agent-based philosophies in the system design and 
management, puts the artificial life concept, empowered 
with advanced distributed robotics, to the forefront of fight 
with numerous world disasters and crises. 

Providing smooth transition from simulated to live 
solutions, with the watershed gradually shifting from the 
former to the latter, it can also support a unified 
conversion from manned to fully unmanned advanced 
systems within the same organizational concept. 
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