
Efficient Robotic Memory Controller for long-term
Planning

Hassab Elgaw Osman

Imaging Science and Engineering Lab, Tokyo Institute of Technology, Japan.
Email: osman@isl.titech.ac.jp

Abstract

This paper contributes on designing robotic memory controller for non-Markovian reinforcement tasks.
Instead of holistic search for the whole memory contents, the controller adopts associated feature analysis
to produce the most likely relevant action from previous experiences. Actor-Critic (AC) learning is used to
adaptively tuning the control parameters, while on-line variant of Random Forest (RF) learner is used as
memory-capable to approximate the policy of Actor and the value function of Critic. Learning capability
is experimentally examined through non-Markovian cart-pole balancing task. The result shows that the
proposed controller acquired complex behaviors such as balancing two poles simultaneously and displays
long-term planning.

Keywords: non-Markovian, actor-critic, random forest, self-optimizing controller.

1 Introduction

As with the most real-world robot learning sys-
tems, the arising of perceptual aliasing, when the
system has to scale up to a non-Markov setting or
POMDP1 renders conventional reinforcement lear-
ning (RL) methods impracticable, raising an in-
terests in heuristic methods without world model
(e.g., ‘memory approach’) that intrinsically and
adaptively modifying the policy. In Memory-based
systems the controller is unable to take optimal
transitions unless it observed the past inputs, then
the controller simultaneously solve the incomplete
perception while maximizing discounted long-term
reward. If a world model is available to the control-
ler, it can easily calculate and update a belief vector
~bt = 〈bt(s1), bt(s2), · · · , bt(sN )〉 over ‘hidden states’
at every time step t by taking into a account the
history trace h = o1, o2, · · · , ot−1, ot.

2 Our Approach

The process of memorizing and scaling up could
be lengthy if traditional memory scheduling pro-
cesses are to be used. In order to speed up lear-
ning process and improve the convergence rate, a
RL-controller is modeled as scheduler for our pro-
posed self-optimizing adaptive memory controller
(Fig.1). Rather than holistic search for the whole
memory contents the model adopt associated fea-

1basically, a POMDP is like an MDP but with observa-
tions (o) instead of direct state perception.

ture analysis to successively memorize a newly ex-
perience (state-action pair) as an action of past
experience. Actor-Critic (AC) learning is used to
adaptively tuning the control parameters, while
on-line variant of random forests (RF) [1] lear-
ner is used as memory-capable function approxi-
mator coupled with Intrinsically Motivated Rein-
forcement Learning (IMRL) reward function to ap-
proximate the policy of actor and the value func-
tion of critic. At this point we would like to men-
tion that M3 Computer Architecture Group at Cor-
nell has proposed a similar work [2] to our cur-
rent interest. They implement a RL-based memory
controller with a different underlying RL imple-
mentation.

3 Controller Architecture

Fig.1 illustrates the general view of our memory
controller based on heuristic memory approach for
solving non-Markovian cart-pole balancing task and
balancing two poles simultaneously. We briefly
explain its components.

Past experiences. Sensory control inputs from
environment would be stored at the next available
empty memory location (chunk), or redundantly
at several empty locations. In our memory im-
plementation only the following parameters have
to be specified by a designer: 1) The capacity of
the memory, 2) A function which extracts features
from its stored locations, 3) A predictor which pro-

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 403



vides relevant features of the current system state,
and 4) A function which provides intrinsic rewards.

Feature predictor. Is utilized to produce asso-
ciated feature for selective experience. This predic-
tor was designed to predict multiple experiences in
different situations. When the selective experience
is predicted, the associated feature is converted to
feature vector so the controller can handle it.

Features Map. The past experiences are mapped
into multidimensional feature space using neighbo-
rhood component analysis, based on the Bellman
error, or on the temporal difference (TD) error. In
general this is done by choosing a set of features
which approximate the states S of the system. A
function approximator (FA) must map these fea-
tures into a value function V π for each state in
the system. This generalizes learning over simi-
lar states and increases the speed of learning, but
potentially introduces generalization error as the
feature will not represent the state space exactly.

Memory access. The memory access schedu-
ling is formulated as a RL agent whose goal is
to learn automatically an optimal memory sche-
duling policy via interaction with the rest of the
system. As can be seen in Fig.1 two scenarios are
considered. In Fig.1a all the system parameters
are fully observable, the agent can estimate V π for
each state and use its actions (past experiences).
In Fig.1b the system is partially observable [3, 4],
the agent does not know which state it is in due
to sensor limitation, the agent updates its policy
parameters directly. Since our system is mode-
led as non-Markovian (non-MDP) process decision
depends on last state-action, and the state tran-
sitions st+1 = δ(st, at) depend on arbitrary past
state where the agent had visited. This transition
is expressed by Pr(st|st−1, at−1, s

′
t, s
′′
t , · · ·), where

st−1, at−1 are the previous state and action, and
t′, t′′ are arbitrary past time.

Learning behaviors from past experience. On
each time step, a component of the TD learning
algorithm, called the adaptive critic, is used to
estimate the expected future reward of retaining
various combinations of memory locations. The
collection of memory locations show to have the
highest accumulated rewards are more likely to be
remembered. The amount of occasional intrinsic
rewards received, a long with the estimates of the
adaptive critic on this time step and on the pre-
vious time step, are used to compute the TD error–
the change in expected future reward. This error
signal also used to train the adaptive critic.

PolicyValue function Sensors

observation
Policy

Feature Map
Feature predictor

Past experiences

chunkchunkchunkchunk

environment

state state rewardreward action action

(a) (b)environment

System/situations

Scheduler State feature

(t)

scheduled command

(t+1)

Memory access

behavior 1 behavior 2 … behavior n

Learning behaviors from experience

Figure 1: Architecture of self-optimizing memory

controller. The controller utilizes associated feature

analysis to memorize complete non-Markovian reinfor-

cement task as an action of past experience.

4 Memory Capable FA

4.1 Actor-Critic Learning

Actor-critic (AC), a group of on-policy TD me-
thods, separates the policy and the value function
into independent memory structures. The policy
structure, or actor, is used to decide which action
to pick in each state. The estimate value func-
tion, or adaptive critic, determines whether the
actions of the actor are to be rewarded or punished.
The algorithms use these spare measures of per-
formance to adopt an optimal behavior over time.
The adaptive critic maps its current state event
onto an estimate of whether it will be rewarded.
The mapping is learned from the past experience.
If s + 1 is the situation that follows situation s in
time, this expected future reward may be written
as:

V (s) = γ0r(s) + γ1V (s+ 1) + · · ·+ γnV (s+ n) (1)

The value of the current situation, V (s), is the
sum of all the rewards we will receive over the
next n time steps. The rewards on each time step
are “discounted” by factor, γ, in the range [0, 1].
Equation (1) can be rewritten in a recursive form:

V (s) = γ0r(s) + γ1V (s+ 1) = r(s) + γV (s+ 1) (2)

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 404



Obviously a value function estimates that fall far
from this equality in considered inaccurate, and the
error is estimated based on TD error:

δ(s) = (r(s) + γV (s+ 1)− V (s)) (3)

Adopting these methods can save much computa-
tion for selecting optimal actions, due to utilizing
separate memory for value function and policy.

4.2 AC in non-Markovian Domain

Due to non-Markovian characteristics, the control-
ler infers the state of its environment from a se-
quence of observation it receives, learns an optimal
action by detecting certain past events, that asso-
ciated with its current perception.
In particular, at time t, the error of the critic is
give by

Ec(t) =
1
2

([r(t) + γJ(t)]− J(t− 1))2 (4)

while the error of the actor is

Ea(t) =
1
2

(J(t)]−R∗)2 (5)

where R∗ is the optimal return, which is dependent
on the problem definition. The expected return is
expressed as the general cost function, J(t), which
is to be maximized by the controller. Specifically,

J(t) = r(t+ 1) + γr(t+ 2) + γ2r(t+ 3) + · · · (6)

where r(t) is the immediate reward and γ is the
time-discounting factor 0 ≤ γ ≤ 1.

4.3 RF Memory for Optimal Learning

On-line RF has the characteristics of a simple struc-
ture, strong global approximation ability and a
quick and easy training [1]. It has been used with
TD learning for building a hybrid function approxi-
mator [5, 6]. Here, in order to improve learning ef-
ficiency and to reduce the demand of storage space
and to improve learning efficiency, the on-line RF
approximator is structured in a way that both ac-
tor and critic can be embodied in one structure,
subsequently, is used to approximate policy func-
tion of actor and the value function of critic si-
multaneously. That is, the actor and the critic can
share the input and the basis functions structure of
the RF. Let RFAppro represent a hybrid approxi-
mator that combines actor and critic. Given a state
s(t) and action a(t), RFAppro is defined such that
RFAppro(s(t), a(t)) = (J(t), a(t+1)), where J(t) is
the estimated value of the given state-action pair,
and a(t + 1) is the subsequent action to be taken
by the controller. At the critic output the error
is captured by TD error. However, at the action
outputs the error is determined by the gradient of

the estimated value J(t+1) w.r.t the action a(t+1)
selected by the on-line RF at time t. Specifically,

ea(t) = α∇a(t+1)J(t+1)

= α

(
∂J(t+ 1)
∂a1(t+ 1)

, · · · , ∂J(t+ 1)
∂ad(t+ 1)

)
(7)

where α is a scaling constant and d is the choices
availabilities at action a. Accumulating the error
for each choice of the selected action, the overall
actor error is given be:

Ea(t) =
1
2

[
d∑
i=1

e2ai(t)

]
(8)

where eai(t) is the choice of the action error gra-
dient ea(t). In finding the gradient of the estimated
value J(t + 1) w.r.t the previously selected action
a(t + 1), the direction of change in action, which
will improve the expected return at time step t +
1, is obtained. Thus by incrementally improving
actions in this manner, an optimal policy can be
achieved. E(t) = Ec(t) + Ea(t) define the reduced
error for the entire on-line forest.

5 Experiment and Results

The proposed controller brings a number of pre-
ferable properties for learning different behaviors.
In this section, we investigate its learning capabi-
lity through a task of cart-pole balancing problem,
designed with non-Markovian settings.

5.1 Related work

The pole balancing algorithm has not been exten-
sively modeled for non-MDP. Although a variation
of Value and Policy Search (VAPS) algorithm [7]
has been applied to this problem for the POMDP
case [8], they have assumed that x and θ are com-
pletely observable. NeuroEvolution of Augmenting
Topologies [9] and evolutionary computation [10],
are another promising approaches where recurrent
neural networks are used to solve a harder ba-
lancing of two poles of different lengths, in both
markovian and non-Markovian settings.

5.2 Non-Markovian Pole Balancing

As illustrated in Fig.2A, Cart-Pole balancing in-
volves a vertical pole with a point-mass at its upper
end installed on a cart, with the goal of balancing
the pole when the cart moves by applying horizon-
tal forces to the cart, which must not stray too
far from its initial position. The state description
for the controller consists of four continuous state
variables, the angle θ (radial), and the speed of
the pole φ́ = δx/δt plus the position x and speed

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 405



of the cart x́ = δx/δt. The two continuous actions
set up for controller training and evaluation were
RightForce (RF), (results in pushing the cart to
the right), and LeftForce (LF), (results in pushing
the cart left). At each time step t, the controller
must only observe the θ and then takes appropriate
action to balance the pole by learning from the past
experience and the intrinsically rewards (Fig.2A).
The optimal value function is shown in Fig.2B.
A simulated sample run is shown in Fig.3. The
controller could keep the pole balanced after about
4000 steps.

θ

mcRF

mp

LF

A B

Figure 2: (A) Illustration of the non-Markov Cart-

Pole balancing problem, where the angular velocity is

not observing by the controller. (B) Optimal value

function.

5.0

5.1

0.1

θ

0

5.1−

0.1−

5.0−

400300250200100 1500 50

step

Figure 3: A sample learning for balancing the pole.

5.3 Non-Markovian 2-Pole Balancing

Then we moved to a harder setting of this pro-
blem, balancing two poles simultaneously. Each
pole has its own position and angular velocity, θ1
and θ̇1 for the first pole and θ2 and θ̇2 for the
second pole respectively. The controller must ba-
lance the two poles without velocity information.
In order to assist the feasibility of our approach
to balance two poles simultaneously we compa-
red with state-of-the-art methods. Table 1 reports

the performance of our controller compared with
traditional value function-based methods (inclu-
ding SARSA-CMAC, SARSA-CABA, and VAPS
) and policy search method (Q-MLP). Value func-
tion performance results are reported by [10], who
used SARSA implementations by [11]. It shows
that our controller takes the minimal evaluations
to balance the poles. With regard to CPU time
(reported in seconds) we slightly fall short to Q-
MLP. However, it interesting to observe that none
of the value function approaches could handle this
task in within the set of steps due to the memory
constraint. The result also indicates that our me-
mory controller stand as a promising method in
solving this benchmark more successful than the
traditional RL techniques.

Table 1: Comparison of our result for balancing

two carts simultaneously with state-of-the-art value

function approaches and policy based methods.

Method Evaluation time
V-function SARSA-CMAC Time Out -

SARSA-CABA Time Out -
VAPS Time Out -

Policy Q-MLP 10,582 153
Memory Our 8,900 300

6 Conclusions

In this paper we provide evidences that the ro-
bot control system will benefit from the inclusion
of a self-optimizing memory controller. Our mo-
del avoids manual ‘hard coding’ of behaviors, mo-
deled the memory controller as a RL agent lear-
ning from past experience. Results based on non-
Markov Cart-Pole balancing indicate that our mo-
del can memorize complete non-Markovian sequen-
tial tasks and is able to produce behaviors that
make the controlled system to behave desirably in
the future. One of our future plans is to overcome
the limited capacity of memory. In our current
design the number of “chunks” that can be used
is quite limited. Another future plan will be in
designing intelligent mechanism for memory upda-
ting, and to experiment with different applications
such as visual and speech recognition, and robot
navigation.

References
[1] Hassab Elgawi, O.: “Online Random Forests

based on CorrFS and CorrBE,” In Proc.IEEE
workshop on online classification, CVPR, pp.1-
7, 2008.

[2] Ipek, E., Mutlu, O., Martinez, J.F., and Ca-
ruana, R.: “Self-Optimizing Memory Control-

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 406



lers: A Reinforcement Learning Approach,”. In
Intl. Symp. on Computer Architecture (ISCA),
pp.39-50, 2008.

[3] Cassandra, A. R, Kaelbling, L. P, and Littman,
M. L.: “Acting optimally in partially obser-
vable stochastic domains,”. Proc. Int’l. Conf on
AAAI, pp.1023-1028, 1994.

[4] Kaelbling, L, Littman, M and Cassandra, A.:
“Planning and acting in partially observable
stochastic domains,”. Artificial Intelligence,
101:99-134, 1998.

[5] Hassab Elgawi, O.: “Architecture of behavior-
based Function Approximator for Adaptive
Control,”. In Proc. 15th Int’l. Conf on Neural
Information Processing ICONIP, LNCS 5507,
pp.104-111, 2008.

[6] Hassab Elgawi, O.: “Random-TD Function
Approximator,” Journal of Advanced Compu-
tational Intelligence and Intelligent Informatics
(JACIII), 13(2):155-161, 2009.

[7] Meuleau, N., Peshkin, L., Kim, K.-E., and
Kaelbling, L. P.: “Learning finite-state control-
lers for partially observable environments,”. In
Proc of the 15th Int’l Conf on Uncertainty in
Artificial Intelligence, pp.427-436, 1999.

[8] Peshkin, L., Meuleau, N., and Kaelbling, L. P.:
“Learning policies with external memory,”. In
Proc. of the 16th Int’l Conf on Machine Lear-
ning, pp.307-314, I. Bratko and S. Dzeroski,
Eds, 1999.

[9] Kenneth, O. S.: “Efficient evolution of neu-
ral networks through complexification,”. Ph.D.
Thesis; Department of Computer Sciences, The
University of Texas at Austin. Technical Re-
port AI-TR-04-314, 2004.

[10] Gomez. F.: “Robust non-linear control
through neuroevolution,”. Ph.D. Thesis; De-
partment of Computer Sciences, The Univer-
sity of Texas at Austin. Technical Report AI-
TR-03-303, 2004.

[11] Santamaria, J. C., Sutton, R. S., and Ram,
A.: “Experiments with reinforcement learning
in problems with continuous state and ac-
tion spaces,”. Adaptive Behavior, 6(2):163-218,
1998.

Appendix A: Pole-balancing lear-
ning parameters

Below are the equations and parameters used for
cart-pole balancing experiments [10]

.1 Pole-balancing equations

The equations of motion for N unjoined poles ba-
lanced on a single cart are

ẍ =
F − µcsgn(ẋ) +

∑N
i=1 F̃i

M +
∑N
i=1 m̃i

θ̈i = − 3
4li

(ẍ cos θi + g sin θi +
µpiθ̇i
mili

),

where F̃i is the effective force from the ith pole on
the cart,

F̃i = miliθ̇2i sin θi +
3
4
mi cos θi(

µpiθ̇i
mili

+ g sin θi),

and m̃i is the effective mass of the ith pole,

m̃i = mi(1−
3
4

cos2θi).

.2 Pole-balancing learning parameters

Table 2: Parameters for the single pole & double pole

problem.

Parameters for the single pole
Sym Description Value
x Position of cart on track [−2.4, 2.4]m
θ Angle of pole from vertical [−12, 12]deg
F Force applied to cart −10.10N
l Half length of pole 0.5m
M Mass of cart 1.0kg
m Mass of pole 0.1kg

Parameters for double pole Value
Sym Description Value
x Position of cart on track [−2.4, 2.4]m
θ Angle of pole from vertical [−36, 36]deg
F Force applied to cart −10.10N
li Half length of ith pole l1 = 0.5m

l2 = 0.05m
M Mass of cart 1.0kg
mi Mass of ith pole m1 = 0.1kg

m2 = 0.01kg
µc friction coef on cart on track 0.0005
µp friction coef if ith pole’s hinge 0.0005

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 407




