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Abstract: This paper deals with a path planning problem for tracking humans in order to obtain detail information about
human behavior and characteristics. In our method, path planning is performed based on Kullback-Leibler (KL) divergence
between the predicted distribution of all human positions and the intensity of field of view of agents. The number of pre-
diction steps is determined according to the consistency of the prediction. Experimental results show that when prediction
of human movement is accurate, the long-term prediction is useful for the path planning. On the other hand, when predic-
tion is inaccurate, long-term prediction might not be useful. Our path planning method works well even under changing
circumstances by changing the number of the prediction length.
Keywords: path planning, human tracking, variable term prediction

I . INTRODUCTION
Visual surveillance methods have been intensively studied

in order to ensure a security because it provides less stress to
a tracked human, and most of these researches focus on im-
proving the quality of position estimation by image process-
ing technique [1] [2]. For a surveillance system, however,
detail information such as human behavior and their charac-
teristics are also important. Since high resolution images are
necessary to obtain such information, visual sensors must be
in close range to human. Mobile agents with visual sensors
can be one of solutions to achieve this. In this research, we
focus on a path planning for mobile agents to acquire detail
information of tracked humans.

The human tracking system is often developed using a
Kalman filter or a particle filter. Since these researches have
only used one-step prediction of the human movement, the
planned paths tend to be myopic one. In order to over-
come this problem, it is useful to plan the path based on
longer-term predictions in the future. Real-Time A* (RTA*)
is a search algorithm for semi-optimal path planning, but it
can be applied to a problem with given start and goal point.
However, it was shown that long-term prediction make the
performance of path planning improved.

Although an accurate prediction of human position im-
proves performance of human tracking [3] [4], accurate
long-term predictions are not always possible . For in-
stance, long-term prediction becomes accurate if every hu-
mans move to a certain direction (Imagine a station at the
morning and evening rush hours). In contrast, it becomes
inaccurate if every human moves their own way like in a
shopping moll or at an intersection without signals. When
humans arrived at a cross over point, the prediction may
become difficult because humans might interact with each
other and therefore human movements might become com-
plicated. As mentioned above, the accuracy of prediction
varies with the situation, such as the day, the time and the lo-
cation. In this research, we proposed a path planning method
with varying prediction length according to changes in the
environment to realize effective human tracking system.

II . HUMAN TRACKING TASK
In this research, the number of humans who indepen-

dently walk in a surveillance area and the number of agents
who track humans for obtaining humans’ detail information
were denoted by Nh and Nc. We assume that the position
and velocity of each human can be measured by sensors em-
bedded in the environment. This assumption would be sat-
isfied by employing a recent research technique for human
position tracking system using sensors embedded in the en-
vironment [5][6](See Fig.1). We also assume that no occlu-
sions between humans and agents occur.

A set of planned paths of agents is evaluated based on
following equation :

D =
1
Nt

1∑
tNh in(t)

∑
t

∑
i∈I(t)

min
j

||µ̄h,i(t) − µ̄c,j(t)|| (1)

where Nt is the number of time steps of the path planning
task, I(t) and Nh in(t) are the set the of indexes of humans
who exist in the surveillance area at time t and its element
count. µ̄h,i and µ̄c,j are the position of the i-th human and
the position of the j-th agent. Hereinafter minj ||µ̄h,i(t) −
µ̄c,j(t)|| is called nearest neighbor distance (NND).

Fig. 1: Human tracking problem.

III . PATH PLANNING PROCEDURE
The predicted position of the i-th human at time t + τ is

approximated by a Gaussian whose center is µh,i(t + τ ; t)
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where t denotes the time to make the prediction. That is, the
probability of the i-th human existing at x at time t + τ is
defined as:

Hi(x, t+ τ ; t)

=
1

2πσ2
h

exp

{
−||x − µh,i(t+ τ ; t)||2

2σ2
h

}
(2)

where σh,i is its variance.
The closer cameras are to a subject, the more detail infor-

mation of the human can be obtained. In this research, we
assume the distance between the camera and the human cor-
responds the amount of information of human behavior to be
obtained, and the intensity of field of view (FOV) of the j-th
camera is defined by a Gauss function :

Cj(µc,j) =
1

2πσ2
c

exp

{
−||x − µc,j ||2

2σ2
c

}
(3)

where µc,j is the position of the agent j and σc is size of
FOV of cameras.

The predicted distribution of all humans’ positions of all
humans and the intensity of FOV of cameras at time t + τ
are calculated as follows :

H(t+ τ ; t) =
Nh in∑
i=1

Hi(µh,i(t+ τ ; t), σh,i) (4)

C(t+ τ ; t) =
Nc∑
j=1

Cj(µc,j(t+ τ ; t), σc) (5)

In our method, the path is determined based on the
Kullback-Leibler (KL) divergence between H and C, and
the path which minimizes the KL divergence is obtained by
a gradient method.

1 . Path Planning
The KL divergence between H and C at time t + τ is

calculated as :

KL(H(t+ τ ; t), C(t+ τ ; t))

=
∫ ∞

¡∞
H(t+ τ ; t) log

H(t+ τ ; t)
C(t+ τ ; t)

dx (6)

We assume that the KL divergence at each time step is in-
dependent to the one at another time step and the multi step
KL divergence can be calculated by the sum of single step
KLs :

F (t) =
T∑
τ=1

λ(t+ τ ; t)KL(H(t+ τ ; t), C(t+ τ ; t)) (7)

where λ is the weighting factor. By using movements of
agents at every time steps d ≡ [d(t + 1; t)>, · · · ,d(t +
τ ; t)>]> , µc(t+ τ ; t) can be calculated as:

µc(t+ τ ; t) = µ̄c(t) +
τ∑
n=1

d(t+ n; t) (8)

where d(t + n; t) is planned movements of agents at time
t+ n.

Fig. 2: Example of solutions. Orange dashed lines indicate the
path which is able to be reused as initial solution at t = t0 +1 time
step.

Since the maximum velocity of each agent is limited to
Vmax, the traveling distance for each agent is truncated when
it becomes longer than Vmax in the process of optimiza-
tion based on the gradient method. That is, if ||d(k+1)(t +
n; t)|| > Vmax{n = 1, 2, · · · , T}, then d(k+1)(t + n; t) :=

Vmax

||d(k+1)(t+n;t)|| × d(k+1)(t+ n; t).

2 . Prediction Model of Human Motion
In order to calculate the prediction at each time step (equa-

tion (7)), a model of humans movement is necessary. For
the simplicity, the motion of human is assumed to follow a
fixed rule given in advance, for example, we use uniform
linear motion, circular motion or zig-zag motion in our ex-
periments. The performance of the prediction model would
have large effect to the performance of human tracking [7],
however, we focus on the number of the prediction steps in
this research. If the predicted motion model is uniform lin-
ear motion model, the predicted position of human at time
t+ τ can be calculated as :

µh(t+ τ ; t) = N(µ̄h(t) + v̄h(t) × τ, σh) (9)

where µ̄h(t) and v̄h(t) are the position and the velocity of
human at current time t.

3 . Generating an Initial Solution
Since the number of iterations in the gradient method de-

pends on the distance between the initial solution and the
suboptimal solution, it seems to be better that the initial
solution is generated near by the optimal solution. In our
method, the initial solution is generated as
d(0)(t + τ ; t) = d̄(t + τ ; t − 1) , where d̄(t + τ ; t − 1) is
the obtained solution at the previous time step. That is, the
orange part of the path in Fig.2 is reused. Movements which
were not dealt in the optimization at the previous time step
are initialized to 0.

If the prediction is accurate, the longer prediction length
makes the performance better but computational cost also
becomes higher, because the dimensionality of d becomes
large (curse of dimensionality). However, when the optimal
solution at current time step is similar to that of the previous
time step, the number of iterations would be reduced much,
even if the prediction steps becomes large.

4 . Prediction Steps
Although path planning using accurate long-term predic-

tion would be efficient, one using inaccurate long-term pre-
diction might decrease performance of tracking in some
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Fig. 3: Trajectories of human and agent
in case of uniform circular motion
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Fig. 4: Trajectories of human and agent
in case of uniform zigzag movement
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Fig. 5: NND between human and agent of each
prediction step under static environment (refer to
Fig. 3 and Fig. 4).

case. In our planning method, the number of prediction
steps T is determined based on accuracy of the prediction.
The probability that human moves following the prediction
model until time t+ τ is calculated as:

P (t+ τ ; t) =
∏
τ

(1 − α(t+ τ)) (10)

where α is the probability of human taking a motion differ-
ent from the prediction model.

The weighting factor λ(t + τ ; t) in equation (7) is calcu-
lated based on P (t+ τ ; t) as:

λ(t+ τ ; t) = (1 − α(t)) × λ(t+ τ − 1; t− 1) (11)

where, λ(t+1; t) = 1. When the λ(t+τ¤; t) becomes below
a certain threshold, KL divergences after time t+τ (τ > τ¤)
are not used in the path planning procedure.

IV . SIMULATION EXPERIMENT
We conducted simulation experiments in a static environ-

ment where human movements do not change and those in a
dynamic environment where human movements sometimes
change. In these simulations, both the number of humans
and that of agents are one.

1 . Tracking in Static Environments
In this case, the path planning was done by constant-term

predictions T = 1 ∼ 30. The length of each simulation
was 200 time steps and the human motion models used in
experiments are a circular motion model (Fig.3) and a zig-
zag motion model (turn ±90◦ every ten time steps)(Fig.4).
The velocity of the human is 1.2 times faster than that of the
agent.

Fig.3 and Fig.4 show the trajectories of the human and
the agent. Red lines in the figures indicate the trajectory of
the human and other lines show trajectories of the agents
which are planned with constant prediction steps (T =
1, 10, 20, 30). Fig.5 show NND between the human and the
agent whose path planning was done with each prediction
steps. According to Fig.3, 4 and 5, the longer-term predic-
tion improve performance of the human tracking.

2 . Tracking in Dynamic Environment
The simulation experiment are conducted in the case

of using zig-zag motion model with dynamically changing
probability of human turning ±90◦ (Fig. 6). The total time

step in this simulation was 200 and the probability of the
turning are 0.3 at time step t = 1 ∼ 50, 101 ∼ 150 (Mode1)
and 0.05 at time step t = 51 ∼ 100, 151 ∼ 200 (Mode 2).
The ratio of velocity are same to the previous simulation. In
this method, the uniform linear motion model is used as the
motion prediction model. Ten sets of simulated human mo-
tion data are generated from this model. Fig. 6 shows an
example of human trajectory in this case. Using these data
sets, following three methods are compared.

Constant : The number of the prediction steps is constant
(T = 1 ∼ 30).

Variable : The number of the prediction steps is variable
(proposed method)

Optimal : All human positions in the future was given in
advance and used to calculate the path (upper bound).
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Fig. 6: Typical trajectory of human (unsteady zigzag movement)

A . Estimating probability of turning α

In our method under the dynamic environment, the accu-
racy of prediction of human motion was calculated based on
the probability of human turning. An online moving aver-
age of the turning probability of was used as α, and α was
updated as:

α(t) = 0.7 × α(t− 1) + 0.3 × β(t) (12)

β(t) =
{

0 (go forward)
1 (turn) (13)

B . Experimental results

Lines in Fig.7 shows the ten steps’ moving average of the
NND by each method. The comparison between Constant
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Fig. 7: Ten steps moving average of NND.
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Fig. 8: Prediction steps of each time steps.

(T = 1) and Constant (T = 30) bear out that when the
prediction was accurate (Mode 2), the path planning method
with a long-term prediction (Constant (T = 30)) is efficient,
on the other hand, when the prediction was inaccurate, the
method with a short-term prediction (Constant (T = 1)) is
efficient. The behavior by the Variable was similar to that of
Constant (T = 1) during Mode 1 and was similar to that of
Constant (T = 30) during Mode 2. Fig.8 shows the number
of prediction steps of each time step. According to Fig.7 and
8, the number of prediction steps in Variable can be changed
adequately based on the accuracy of the prediction.

Fig.9 shows the average NNDs of humans and agents
against each data set (data ID = 1 ∼ 10). In Fig.9, the
value for Constant shows the best value among NNDs by
Constant with different prediction steps. The result of Vari-
able was always better than that of Constant. Fig.10 shows
an average NND of human and agents of Constant of each
number of prediction steps. Red crosses indicate values for
each dataset, and blue points indicate the average taken over
ten data set. Green crosses plotted on the left side of the
graph indicate average NND by Variable. The performance
of Variable was better than that of Constant.

V . CONCLUSIONS
In this paper, we proposed a path planning method where

the path planning was done based on the long-term predic-
tion of human positions. In this method, the number of the
prediction steps is varied according to the accuracy of the
prediction because subsequent predictions would be similar
(consistent) when the prediction is accurate. In a static situa-
tion, the performance of the human tracking becomes better
by increasing the number of the prediction steps. On the
other hand, in a dynamic situation, it is not necessarily the
case that the long term prediction improve performance of
the human tracking. In our method, the number of the pre-
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Fig. 9: NND between human and agent of each data set under
dynamic environment.
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Fig. 10: NND between human and agent of each prediction step
under dynamic environment.

diction steps is adjusted according to the current situation,
and the performance of the human tracking can be kept high
in a changing environment.

VI . ACKNOWLEDGMENTS
This research was supported by “Special Coordination

Funds for Promoting Science and Technology: Yuragi
Project” of the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan.

References
[1] H. Buxton. Learning and understanding dynamic scene

activity: a review. Image Vision Comput., 21(1):125–
136, 2003.

[2] C. Stauffer and W. E. L. Grimson. Learning patterns of
activity using real-time tracking. IEEE Trans. Pattern
Anal. Mach. Intell., 22(8):747–757, 2000.

[3] B. Jung and G. Sukhatme. A generalized region-based
approach for multi-target tracking in outdoor environ-
ments. In Proceedings of the 2004 IEEE Int. Conf. on
Robotics and Automation., pages 2189–2195, 2004.

[4] N. Takemura and J. Miura. View planning of multi-
ple active cameras for tracking many persons based on
multi-start local search. Jouranl of the Robotics Society
of Japan, 25(8):82–89, 2007 (in Japanese).

[5] S. Khan and M. Shah. Tracking multiple occluding peo-
ple by localizing on multiple scene planes. IEEE Trans-
actions of Pattern Analysis and Machine Intelligence,
2008.

[6] K. F. MacDorman et al. Memory-based attention con-
trol for activity recognition at a subway station. IEEE
MultiMedia, 14-2:38–49, 2007.

[7] A. Bruce and G. Gordon. Better motion prediction for
people-tracking. In In Proceedings of ICRA 2004, 2004.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 398




