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Abstract: In this paper, a new localization approach for a team of robots which utilize emergent properties of their
formation is proposed.  At times, some of such a synchronized behavior generates spin-off effects that include
geometric patterns on them. Therefore, it seems to be a reasonable question whether it is possible to utilize the pattern.
Firstly, the authors discuss Takayama's control strategy which is proposed for target enclosure formation, which is a
typical formation for Robocup. Then they propose a simple and useful expansion of Monte Carlo localization to utilize
the emergent pattern of this formation. The proposed algorithms are confirmed by a series of computer simulations.
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I. INTRODUCTION

Localization is an important issue for mobile

robotics. It requires to integrate a set of observed data

captured by different sensors. Bayesian approach is one

of the major approaches which sets up probabilistic

mathematical framework. Particle Filter is a non-

parametric probabilistic Bayesian approach which is

adequate for non Gaussian distribution of particles.

However, it needs larger amount of computational

resources than others. Generally, localization accuracy

is depended on robot’s behavior and task so on.

Therefore, when a robot cannot manage sufficient

computational resource for its localization by itself

multi robot cooperation seems to be a hopeful direction.

However, current multi robot cooperation for

localization methods indicates poor scalability.

In this paper, we discuss a new multi robot

localization approach which complements this weakness.

We assume that robots already know their collective

behavior which are emerged while they are at work.

Collective behavior is a bottom-up phenomena, for

example, Mexican wave. Generally, the phenomena is

more stable, the larger the group size is. Therefore, it

can be possible to make a new cooperative localization

approach by using this property which works well when

the group size is large. In this paper, we show an good

example and formulate its ability.

This paper is composed as follows. Firstly, we

explain Takayama’s target enclosure scheme which is

adopted as their work to generate collective behavior.

Also Monte Carlo Localization is explained which is the

algorithm to estimate a robot’s position. Then, a new

multi robot localization algorithm is proposed. Then, the

results of a series of computer simulation verify this

idea. As a result, the proposed algorithm can use target

as a new landmark with 

€ 

1/ n  times small variance.

Fig.1. Takayama’s Target Enclosure: dynamics

II. COOPERATIVE LOCALIZATION

2.1. Particle Filter(MCL)
A bunch of sensor fusion methods are introduced.

Multisensor fusion method based on particle filter is

called as MCL(Monte Carlo Localization).

MCL is an implementation of Bayes Filter which a

set of particles are used for representing probability

distribution. Let’s suppose current time is t. The set of

particle at t is

Fig.2. Takayama’s Target Enclosure: rules
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€ 

χ t := xt
[1],xt

[2],...,xt
[M ] (1).

Each particle represents a hypothesis about state of its
robot. Here, a hypothesis means robot’s position and
direction in 2D space, namely 

€ 

(x,y,θ) .
The a set of particle is updated by the step. A single
update procedure is composed the following 3 sub
procedures.
Step1) sampling
The new particle set 

€ 

xt
[m ] is generated by the last

particle set 

€ 

xt−1
[m ] and the control signal at t 

€ 

ut . We
supposed that each robot has crawler so that 

€ 

xt
[m ] is

calculated by [2] and 

€ 

ut=

€ 

(v,ω) . The set of new
particles are called as 

€ 

χ t

Step2) Evaluation
In this step each particle of 

€ 

χ t
 is evaluated. The

likelihood of each particle

€ 

wt
[m ] is calculated. Let’s

suppose there are J landmarks on map L, which location
is known. The 

€ 

wt
[m ] is calculated by the probability

€ 

p(zt xt
[m ],L j ) of observing 

€ 

zt=

€ 

(r,φ)  about j-th

landmark 

€ 

L j

€ 

(1≤ j ≤ J)  when it locates 

€ 

xt
[m ] as

follows.

€ 

wt
[ m]∗ = prob(r − ˆ r ) ⋅ prob(φ − ˆ φ ) (2)

where 

€ 

(ˆ r , ˆ φ ) is the true valu of j-th landmark 

€ 

L j  and
prob indicates a error function.
Step3) Resampling
The new set of particle 

€ 

χ t  is generated by 

€ 

χ t
 We adopt

roulette selection. The selection probability of  m-th
particle is 

€ 

wt
[m ].

2.2. Particle Filter(MCL)
A bunch of sensor fusion methods based on

Bayesian approach are introduced [1]. Relative

distance[3], rendezvous probability[4] transmitted are

utilized for new evaluation criteria of equation (2). [5]

proposes a camera system which uses transmitted

particle for new candidates. It works well but all of

these previous works supposed that each robot can

identify all other robots. It makes serious problems

when robots move fast and when they work in closed

order. Basically, larger number of robots there are in a

team, it makes harder to recognize a particular

teammate.

III. THE PROPOSED ALGORITHM

3.1. Collective Behavior and Bottom Up Properties
By the above summary the following idea comes up

naturally. If some properties which get more reliable as

increase of the number of robots are utilized, the robots

can expect more accurate localization by using

equation(2). Generally speaking, collective phenomena

is occurred when many objects interact, for example,

jam, Mexican wave. As known well, it is more difficult

to emerge such character when the number of people in

stadium is small so that this collective phenomena

seems to be a good candidate for the robust property for

localization of dense robots. For this purpose, we

assume the following. Normally, these phenomena

occur by chance and it is not intentional act. However,

in this paper, we suppose that all of robots agree that

they take some action to generate such collective pattern.

More over, all of them know the bottom up pattern

before hand.

3.2. Target Enclosure Behavior
In this paper, target enclosure behavior proposed by

takayama [6] is adopted in exemplification of this new

multi robot localization framework. Takayama proposes

interesting simple rule for target enclosure in 2D plane.

Let’s suppose that n nonholonomic robots try to enclose

a target at origin (see Fig.1). These robots are numbered

counterclockwise. They propose the following control

method.

€ 

vi = fβ i (3)

€ 

ω i = vi / r − k cosα i (4)

The 

€ 

Pi  , 

€ 

vi and 

€ 

ω i  denote i-th robot , its control

speed 

€ 

vi, and angular velocity respectively. This rule

uses 2 angle information, 

€ 

α i ,

€ 

β i (see Fig.2) and relative

distance to the target. 

€ 

k, f > 0  are gain parameters.

According this rule, the robots form a circle path around

the target(see Fig.3).

Fig.3 a scene of the target
enclosure behavior. (i) An
initial state

(ii) A convergence state

Therefore, the following characteristics could be

observable when this circular formation succeeds.

(E1) the relative distance to the target should be kept 

€ 

r .
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(E2) the relative angle 

€ 

α i to the target should be kept

€ 

π /2(by tangent line theorem).

(E3) the relative angle to its neighborhood should be

equalized.

Fig.4. The proposed algorithm

Fig.5. The simulation environment

3.3. Proposed algorithm

By these 3 information, the localization algorithm is

proposed(Fig.4). This algorithm composes of 3 stages.

Firstly, each robot

€ 

Pi  deduces its position 

€ 

xit  by

average of its own particles

€ 

xit
[m] . Next, by transmitting

the deduced position each other, the position of target

€ 

Tt  is estimated by averaging the set of position of them,

namely 

€ 

Tt = 1/n xi t∑ .

 At the third step, in MCL, the particle 

€ 

xt
[m]  is

evaluated by this information about the target and its

observation 

€ 

zt  more than the landmark information

€ 

L j .

€ 

wt
[m] = prob(Tr − r ) ⋅ prob(Tφ − π / 2)

         ⋅ prob(r − ˆ r ) ⋅ prob(φ − ˆ φ )

(5)

€ 

Tr = (Tx − x)
2 + (Ty − y)

2 (6)

€ 

Tφ = atan2(Ty − y,Tx − x) −θ (7)

where 

€ 

Tt  is the distance to the target when 

€ 

Pi  locates
at 

€ 

xt
[m ], and 

€ 

Tφ  indicates the angle to the target 

€ 

Tt
when 

€ 

Pi  is at 

€ 

xt
[m ].

IV. EXPERIMENTS

4.1. Accuracy of the target position
Our algorithm consists of 3 steps, and the first 2 steps

estimates the target location by averaging of all of

robots position. Firstly, the results of estimation of the

target location are shown(Table.3.2).

 We build the simulation (see Fig.5). Each robot is

simplified as a 40cm diameter cylinder. The 12m x 12m

rectangle field is surrounded by the same shape objects

as wall. There are 4 landmarks at each corner of this

field. At the center of the field, the target is set. The 

€ 

r 
sets 3m. All sensors installed at a robot contains realistic

nose. Any measure of the distance suffers Gaussian nose

with variance of 1m 

€ 

N (0,1.0) , on the other hand,

€ 

N (0,0.01rad)  Gaussian noise comes to be mixed in any

measure of angle.

 Fig.6 shows the error of the estimation of target

location by the proposed method (blue) and the error of

the estimation by an isolated robot (red). The x axis

means the time progress (step). Table 1 shows the

statistic of the result.   

 Fig.6 says that the proposed method can estimate the

target location more accurate than that of a single robot.

Additionally, this method can provide the good quality

information immediately on starting to enclose the

target.

 The estimation of target location is average of

members’ location. Therefore, the improvement seems

to be getting large as the increase of the number of

robots. Let’s suppose that the standard deviation of error

of distance to one of landmark is 

€ 

σ L . Also 

€ 

σ X  and

€ 

σT  denote the standard deviation of error of

localization of a robot and estimation of the target,

respectively. An isolated robot uses landmarks only to

estimate its position so that

€ 

σ X =σ L                   (8)

If each of the above estimation is independent, 

€ 

σT
2

can be written as follows，

     (9).

Then, we get

(10)
€ 

σT
2 =

1
n

σ X
2

∑

€ 

σT =σ X / n

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 162



Therefore, we can conclude that the proposed method

can provide a 

€ 

1/ n  time more stable target location

estimation than that by a single isolated robot.

 Table 1 shows the results of that by a single robot (left

column), by 5 robots team(the center column), and 8

robots team (the right column). 

€ 

σT  of single robot is

0.5004. On the other hand, 

€ 

σT  of 5 robots team and

8robots team are 0.2323 and 0.1836 respectively. These

results about the improvement fit the above discussion

because 

€ 

1 5 =0.4472 ≒  0.4642=(0.2323/0.5004)

and 

€ 

1 8 =0.3535 ≒ 0.3669=(0.1836 /0.5004)

Therefore, the proposed algorithm in n robots can

estimate the target location with 

€ 

σ L / n  deviation.

4.2. Accuracy of Proposed localization Algorithm

Finally, we show the total performance of the

proposed method. 

€ 

r =3m. A simulation runs 3000 steps.

Table 2 shows the statistics of the robot’s location

estimation error of the last 2000 steps. The left column

indicates localization error by a single isolated robot.

The center and the right column mean that by 5 robots

team and by 8 robots team, respectively. The 5 robots

team can get better estimation (0.2618 m) than that of a

single robot.(0.3356 m) Moreover, the 8 robots team can

get more better estimation than that of 5 robots team.

Fig.6. The error of the estimation of the target location
by the proposed method.

Table 1. The statistics of the estimation error of the
target location by the proposed method.

(meter) estimation by
 an isolated 

robot

the proposed
 by 5 robot

 team

the proposed
 by 8 robot

 team
error average 0.5004 0.2323 0.1836
deviation of
error 0.311 0.124 0.111
distribution of
error 0.097154 0.015556 0.012502
the number of
samples 3000 3000 3000
the worst
error 3.1432 0.7945 0.9241
the best
estimation 0.0243 0.0011 0.0023

Table 2. The statistics of the estimation error of robot
location.

(meter) an isolated
robot

the
proposed(5

robots)

the
proposed(8

robots)
error average 0.3356 0.2618 0.2574
deviation of
error 0.021274 0.021094 0.023420
the worst
error 0.9005 0.9856 1.0394
the best
estimation 0.0069 0.0023 0.0053

V. CONCLUSION

In this paper, we proposed a new multi robot

localization approach by using collective behavior

which are emerged while they are at work. The results

of a series of computer simulation based on Takayama’s

target enclosure scheme verify this idea. Then this

cooperative localization approach by using this bottom-

up property which works well. Especially, the proposed

algorithm can use target as a new landmark with 

€ 

1/ n
times small variance. Therefore, we hope that this

framework could complement the low scalability of

traditional multi robot cooperative localization.
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