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Abstract

This paper shows a rapid learning method of behavior policy for mobile robots teleoperated by an
operator. Rapid policy adaptation cannot be achieved when data from every process cycle is used for
learning because important and meaningful data are not differentiated with other data. We propose a
method to solve the problem by selecting significant data for the learning based on change in degree of
confidence of the behavior decision. A small change in the degree of confidence can be regarded as reflecting
insignificant data for learning, so that data can be discarded. Accordingly the system can avoid having to
store too much experience data and the robot can adapt rapidly to changes in the user’s policy. In this
paper we discuss the experimental result of an experiment in which user policy changes between ’avoid’
and ’approach’ on a mobile robot.
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1 Introduction

One of the important abilities for personal service
robots which act in real environment with human
beings is to learn and acquire novel behavior strat-
egy according to observation of users’ behavior. To
learn the behavior strategy, conventional methods ob-
serves sets of sensor input and command output, ex-
tracts meaningful relation between the sensor and
commands using statistical methods. But the perfor-
mance of the learning strongly depends on the qual-
ity of the dataset of sensor and command. When
the dataset included important and meaningful ex-
perience data, the learning would be a success; how-
ever it is difficult to obtain sophisticated experience
dataset for human-robot interaction in real world, be-
cause the robots basically stores the dataset in every
process cycle. For example, when a user kept operat-
ing same command in same situation, the statistical
learning procedure tends to output the frequent com-
mand even though the sensor is not the frequent but
rare. To select the rare command for rare sensor, the
system should ignore insignificant frequent dataset
to avoid bad learning quality. In this paper, we pro-
pose a technique to manage experience dataset with
evaluation of significance of the dataset based on a
concept of change in degree of confidence for behav-
ior decision. A small change can be regarded as an
insignificant data for learning, so that data will be
discarded. Accordingly, the system can avoid having

to store too frequent experience data.
Conventional methods like window [1][2] based

adaptation require background investigation of the
domain to find a suitable window, dual model [3][4]
based methods uses separate model for short term
and long term learning but are unsuitable for rapid
adaptation with long term model, interaction [5][6][7]
based methods does not deal with adaptation with
user policy but only with acquiring user policy.

Bayesian network is suitable to represent policy,
because sensor and command can be represented even
though the observation of the user is not well con-
ducted and also it can output a degree of belief for be-
havior decision based on observation of sensor as ev-
idence. Conventional simple belief calculation based
on frequency of the dataset causes the problem that
the system tends to output the most frequent com-
mand even though sensor input for rare situation is
given, when the dataset observed continuously dur-
ing the human-robot interaction. The problem arises
because the prior probability is calculated using the
numbers of observations. This factor also causes an-
other problem that the robot cannot adapt rapidly to
changeable policies of the user. We adopt Dirichlet
distribution to evaluate the significance of data. The
Dirichlet distribution represents not only event prob-
ability among several propositions, but also degree
of confidence for the output probability just referring
a set of number of observation for the propositions.
The system calculates the degree of confidence before
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and after the current observation. The change in the
two degrees of confidence can be regarded as the im-
portance of the observation to the learning process.

2 Bayesian Network and Signif-
icance Evaluation

2.1 Bayesian network

A Bayesian network is a directed acyclic graph con-
sists of parent nodes representing causes and child
nodes representing effects as shown in Fig. 1. Each
node has a propositions assigned to it which might
have several values. The activation of a proposi-
tion is represented probabilistically, and as a result,
each node has a stochastic variable. Specifically, sen-
sor information in the robot, the behavior that the
robot is to perform, and the content provided by
a person are assigned to a node. The relationship
among nodes is described using conditional probabil-
ities with stochastic variables.
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Figure 1: A Bayesian network

Let us denote a stochastic variable for a particular
node B with the propositional symbols b1, b2, . . . , bm

by B = {b1, b2, . . . , bm}. The set of parent
nodes connected from above to this node is A =
{A1, A2, . . . , Ak}, and the space consisting of a com-
bination of each value for the stochastic variables is
a1, a2, . . . ,al. The reasoning can be expressed

Bel (B) = βλ (B) π (B) , (1)

where λ (B) represent the current strength of diag-
nostic support contributed by the children of B given
by

∏
i λi (B), π (B) represent the current strength of

the causal support contributed by the parents of B
and β is the coefficient for normalization. Elements
of Bel (B) indicate the plausibility for each proposi-
tion of the behavior node. One of the advantages of
Bayesian networks is that a robot can evaluate the
vagueness of a behavior decision, and this leads it to
ask questions and give suggestions to users [5]. For
example, the robot should ask the user to confirm the

behavior decision when the elements of Bel (B) are
almost equal.

2.2 Conventional Method

Suppose that B represent a behavior node and it
does not have any parent nodes A in Fig. 1 and
S represent sensor nodes. The robot observes the hu-
man’s behavior bj and gathers the sensor information
di at the same moment. Let v[t]ε{d1,d2, . . . ,dn}
be the observation of the sensor at time t. Let
o[t]ε{b1, b2, . . . , bm} be the observation of the user’s
behavior at time t. The sensor observation vector is
written as V[t] = {v[1],v[2], . . . ,v[t]} and user in-
struction vector as O[t] = {o[1], o[2], . . . , o[t]}. Then,
we can define data as D[t] = {V[t],O[t]} . Let N
be the number of observed data, Nj the number of
observations of behavior bj, and nij the number of
observation of data when di is observed with bj. One
of the simplest calculations based on the observation
is

P (di|bj) = P (S = di|B = bj) =
nij

Nj
, (2)

P (bj) =
Nj

N
, (3)

A problem arises with this simple calculation when
the data D[t] is continuously input during the obser-
vation. Suppose that the propositions of behavior b1

and b2 are set in the behavior node. When a rare but
important operation b2 is observed even though N2

is smaller than N1 the prior probability P (B = b2) is
close to 0 while P (B = b1) is close to 1. The problem
arises because the prior probability is calculated us-
ing the numbers of observations. We propose an ap-
proach in which the important observation is selected
on basis of the change in the degree of confidence.
When the change in confidence in two consecutive
time steps is small, this situation is regarded as fa-
miliar; the experience data is considered insignificant
to be discarded. In contrast, when the robot detect
a large change in confidence in two consecutive time
steps, this situation is considered unfamiliar; the ex-
perience data is considered significant to be accepted.
The next section discusses an algorithm to distinguish
the above two cases.

2.3 Proposed method

We use a Dirichlet distribution to evaluate the sig-
nificance of data based on changes in the degree of
confidence. A m-directional Dirichlet distribution for
x = {x1, x2, . . . , xm}, is given by

fd (x; α1, . . . , αm) =
1
Z

∏
k

x
αk−1
k , (4)
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where,

Z =

∏m
k−1 Γ (αk)

Γ
(∑m

k−1 αk

) , (5)

is a normalization factor, Γ is the gamma function
and the m parameters αm are assumed to be positive.
The Dirichlet distribution parameters are expressed
in terms of observations of different behaviors for ex-
ample α1 = 1+N1. The system increases one Dirich-
let parameter α1 by observing behavior b1. When α1

becomes larger than the other Dirichlet parameters,
the peak of the distribution moves within a small area
at the end of corresponding variable as shown in Fig.
2.

0
0.4

0.8
1

0

0.8
1

0
20
40

 

 

f   (x|20,3,3)

f    (x|3,20,3)

f   (x|3,3,20)

x x

dd

d

0.4
21

Figure 2: Dirichlet density functions with peak
moved to the corresponding parameter

The system calculates the degree of confidence be-
fore and after the current observation. Confidence at
time t is calculated as

Ct =
∫

Δ

fd

(
x; αt

)
dx, (6)

where fd (x; αt) is the Dirichlet distribution at time
t and Δ represents area of integration where the peak
of the distribution is moved like the area inside the
circle in Fig. 2. The change in the two degrees of
confidence can be regarded as the importance of the
observation to the learning process. To evaluate the
significance of the observation data, the criteria

E = Ct − Ct−1, (7)

is calculated. Data {Vi[t],Oi[t]} are accepted
when E ≥ θ, and data are discarded when E < θ.
θ should be set according to required rapidness of
the learning because significance of data can be con-
trolled with θ. For example, an application with a
very high input frequency will likely have a different
threshold (a lower one) from one with a very low in-
put frequency (relatively higher) for adapting to the
user’s new preference. For rapid adaptation, the area
and threshold should be empirically determined by
experimentation.

3 Experiment and Result

3.1 Experimental Setup

We developed a teaching and learning system in a
virtual environment that incorporated our concept.
The environment, as shown in Fig. 3 was prepared
using webot real-time simulation software. The en-
vironment had an enclosed area of 8 [m]× 8 [m]. A
static square obstacle whose size was 1 [m]× 1 [m] was
placed inside the area. The user interface consisted
of a lever joystick and the user controlled the robot
by using it. We taught two policies to the robot,
avoid and approach, in the field. In the experiment,
we used a Bayesian network consists of eight distance
sensor nodes and a behavior node as in Fig. 4.

8 m

8 m
Box

Robot
Seonsors

Figure 3: Virtual experimental environment

Figure 4: A Bayesian network used in the experiment

The robot model had eight front laser distance sen-
sors (Si,i = 1, 2, . . . , 8) mounted on the front to mea-
sure the distance to obstacles along a horizontal line
parallel to the floor. Joystick inputs were translated
into discrete instructions by using a predetermined
threshold. We found [8] that area of integration was
inversely proportional and threshold value was di-
rectly proportional to the time required reach the
discarding criteria respectively. Therefore we set the
area of integration to the maximum non-overlapping
area and the threshold to 1.0 × 10−6.

The user can teleoperate the robot at any time and
halt operation temporarily for changing robot orien-
tation in the virtual environment. When user do not
operate the robot, it operates automatically with it’s
own degree of confidence for behavior node. Previ-
ously we have shown that our algorithm can adapt to
the user preference rapidly [8]. In that paper we have
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shown that robot adapted to user preference like go
forward, turns left or turn right. In this experimen-
tal setup user policy correspond to robot behavior,
avoids and approach. Avoid policy is accomplished
by going forward when there is no obstacle and turn-
ing left when there is an obstacle. Approach policy
is accomplished by going forward when there is no
obstacle and approaching the obstacle when there is
one.

3.2 Experimental Results

The user first taught avoid policy twice. The user
then changed the policy and approached the obsta-
cle. Fig. 5 shows the changes in probability of degree
of confidence during teleoperation. When the user
changed the policy from avoid to approach around
step 250 the system could override the previous pol-
icy just after step 300 and the robot could rapidly
adapted to the new policy.
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Figure 5: Probability of behavior during policy adap-
tation
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Figure 6: Number of data in the secondary database
during policy adaptation

Fig. 6 shows the number of data evaluated as sig-
nificant and kept in secondary database. The number
of data in the secondary database is increased until
the change in the degree of confidence was low for
any user behavior. Flat part represents when data is
evaluated as insignificant and discarded or the robot
operate automatically. Here we observe that data is
kept for one go forward and two turn left behavior
for avoid policy. And when policy is changed the sys-
tem accepted data for approach and overridden policy
around after steps 300.

4 Conclusions

Experimental results show that proposed method can
adapt to user’s policy change based on significance
evaluation using change in degree of confidence. The
novel point of the method is that the policy adap-
tion depends on the number of selected significant
data rather than enormous amount of observed data.
Currently, significance evaluation is done on the be-
havior node. We are considering significance evalua-
tion for each sensor proposition of every sensor node.
This will ensure that only significant sensor observa-
tion will be used for learning and that will make our
system more robust.
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