
Fast processing method for PIV using GPGPU

Koji Miyazaki and Kikuhito Kawasue

University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
(Email: ng3804u@student.miyazaki-u.ac.jp)

Abstract: In the present study, the ability to apply general purpose computation on graphics processing units (GPGPUs)
to particle image velocimetry (PIV) is confirmed, and the processing speed of the PIV is accelerated by GPGPUs. Our
code is based on the direct cross-correlation method, where one of the PIV algorithms is rewritten for GPGPU
computing using the CUDA tool kit. The results of a performance test indicate that GPU computing for PIV
demonstrated an excellent acceleration rate of more than 100 times greater than CPU computing while maintaining
acceptable precision.

Keywords: GPGPU, CUDA, PIV, Parallel computing, Image processing

I. INTRODUCTION

In our research, the processing speed of particle
image velocimetry (PIV) was accelerated by general-
purpose computation on graphics processing units
(GPGPUs), which has been considered as a new
acceleration technique for computing. Computations
using GPGPUs use the graphics processing unit (GPU)
on a graphics card for not only image processing but
also general purposes such as numerical simulation [1].
The acceleration of processing using GPGPUs has been
attempted for various numerical simulations, such as
computational fluid dynamics and medical image
processing [1]-[4]. However, reports on the application
of GPGPUs to PIV are rare. Therefore, we applied
GPGPU to PIV, which is an image-based measurement
method, and evaluated the resulting performance. The
computational errors related to GPGPUs should be also
examined. Since most GPUs do not have double-
precision arithmetic units, the results of computing on
GPUs for application to PIV may have problems related
to precision. Therefore, the results of the PIV analysis
obtained using a GPGPU were compared to those
obtained using a CPU.

Particle image velocimetry is a useful tool in the
study of transient fluid flow phenomena [5][6]. The
velocity vectors of a fluid are obtained by measuring the
translational displacement of tracer particle during a
short time interval without interfering with the flow. In
general, the direct cross-correlation (DCC) method,
which is a PIV algorithm, offers improved accuracy as
compared with the FTT-based cross-correlation method.
However, the DCC method requires several process
iterations, unlike the FTT-based cross-correlation
method. In the case of actual analysis, as the size of the
analysis region becomes larger, the processing time
increases, often reaching several minutes. Since this is
problematic in the case of practical application, the
processing speed using the DCC method should be

accelerated. In the DCC method, in order to determine
the displacement of a small region, cross-correlations
between the interrogation region and several candidate
regions must be calculated, and the associated
processing comprises the majority of the calculation
costs for the whole process. The calculation of all of the
cross correlations was parallelized and accelerated using
a GPGPU with CUDA, which is one of the software
development environments for GPGPUs used in the
present study. CUDA is freely distributed by NVIDA
and extends the C language for use with the GPU,
which has an excellent architecture for parallelism. As a
result of a performance test, computing on the GPU for
application to PIV exhibits an excellent acceleration rate
of more than 100 times greater than CPU computing. In
this case, approximately 95% of the entire process was
executed on the GPU.

II. GPGPU

1. GPU hardware architecture
Figure 1 describes the architecture of the NVIDIA

GeForce GTX 275 GPU used in this study, and Table 1
lists its hardware specifications. The GPU chipset of the
GeForce GTX 275 is the GT200, which can operate in
graphics mode or parallel computing mode. In GPGPU
computing, the parallel computing mode is used. In
graphics processing mode, the GPU architecture
consists of ten texture processing clusters, and, in
parallel computing mode, the GPU architecture consists
of ten thread processing clusters. Here, TPC stands for
texture processing cluster in graphics processing mode
and thread processing cluster in parallel computing
mode. Each TPC is made up of three streaming
multiprocessors (SMs), each of which contains eight
streaming processors (SPs), which are either processor
cores or thread processors. The total number of SMs on
the GT200 GPU is thirty. Unlike the general CPU
architectures, the GPU can perform zero-cost hardware-

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 106

based context switching, i.e., the GPU can immediately
switch to another thread process, and it supports over
thirty thousand concurrent threads in hardware (see
Table 1). However, the maximum number of concurrent
threads depends on environmental variables such as the
executed kernel size (program size) in the GPU.
Although double-precision arithmetic units have been
implemented in the GT200 GPU, only one unit is
implemented per SM and thirty units are implemented
per GPU. Therefore, the performance of the double-
precision arithmetic may be poor.

Fig. 1 NVIDIA GeForce GTX 275 GPU architecture in
parallel computing mode

Table 1 NVIDIA GeForce GTX 275 hardware specifications
Texture processor clusters (TPCs) 10
Streaming multiprocessors (SMs) per TPC 3
Super function units (SFUs) per SM 2
Streaming processors (SPs) per SM 8
Total SPs (Cores) 240
Maximum concurrent threads per SM 1,024
Total maximum concurrent threads 30,720
Double-precision arithmetic units per SM 1
Peak floating point performance GFLOPS 933
Global memory size 869 MB
Shared memory per SM 16 KB
Registers per SM 16,384 registers

2. Software development environment for GPGPU
Cg is a conventional software development tool kit

for GPU application software. Because the Cg is the
specifically designed programming tool kit for
computer graphics, it is not suitable for the development
of GPGPU application software. However, recently,
software development environments, such as CUDA
and OpenCL, which consist of a complier, libraries, and
useful tools for GPGPUs have been made freely
available. CUDA is a C language development
environment for NVIDA CUDA-enabled GPUs but
OpenCL can be used for both NVIDA and ATI GPUs,
which support the OpenCL architecture. In the present
study, we used CUDA as the development tool of the
program code for GPGPU computing.

III. PIV ALGORITHM

1. Direct cross-correlation (DCC) method
In PIV, the velocity information is estimated using

two consecutive images detected by a camera. Figure 2
shows an example of standard PIV consecutive images
[7], and illustrates the procedure of the direct cross-
correlation method. In order to extract the velocity at
each location, a normalized cross-correlation coefficient
between the location (x, y) in the first image and the
location (x+dx, y+dy) in the second image is defined as
follows:

(1)

where f(x,y) and g(x,y) are the intensities at location
(x,y) in the first image and the second image,
respectively, and N denotes the size of a side of the
interrogation region, which is determined considering
the concentration of tracer particles and the maximum
velocity of the flow. This cross-correlation coefficient is
used to estimate the translational displacements of tracer
particles between two consecutive images. The
displacement at location (x,y) between two images is
estimated as follows. First, the values of the above
cross-correlation coefficient are calculated between
location (x,y) in the first field and the possible point
(x+dx,x+dy) in the second field. Second, the dx and dy
values of the displacement are changed, and the cross-
correlation coefficient is recalculated. By repeating this
procedure, the best estimate of the translational
displacement of the tracer particles is determined as the
pair (dx,dy) that maximizes the correlation coefficient.
The global velocity profile of the flow can be obtained
by repeating the above computation at every location.
Figure 3 shows a flow chart of the DCC method.

Fig. 2 Overview of the procedure of the DCC method

2. Amount of computations in the DCC method
In Fig. 2, Ns denotes the size of one side of the

search region. In order to obtain one velocity vector in
the DCC method, the correlation coefficient is
calculated Ns×Ns times. When Ns = 33 and the number

()
(){ } (){ }

(){ } (){ }∑ ∑∑∑

∑∑

= = ==

= =

−++−

−++−
=

N

i

N

i

N

j
mji

N

j
mji

N

i

N

j
mjimji

fg

gdyydxxgfyxf

gdyydxxgfyxf
dydxR

1 1 1

2

1

2

1 1

,,

,,
,

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 107

of locations required in order to determine the velocity
vectors is 256, the number of calculations per location
reaches 1,089, and the calculation is performed a total
of 278,784 times during processing. Table 2 shows an
example of the increase in the number of calculations.
As Ns increases, the required calculation amount
increases extremely (proportional to Ns×Ns). In the
DCC method, the computational cost required to
calculate all of the cross-correlation coefficients
between the interrogation region and all of the candidate
regions in the search region is enormous. In the case of
our code for the DCC PIV, the processing time required
to calculate the cross-correlation coefficients accounts
for approximately 99% of the total processing time.
Since the cost is expected to be substantially reduced
and the processing speed is accelerated by parallelizing
the calculation process, the associated part of our code
based on the DCC algorithm was rewritten to the
GPGPU computing code using the CUDA tool kit. A
flow chart of the parallelized DCC method using
GPGPU is shown in Fig. 4.

IV. PERFORMANCE TESTS

1. Testing conditions
Tables 3 and 4 show, respectively, the testing

environments and test cases used to evaluate the
performance of the GPU computing for PIV. In Cases 1
through 5, the search region size was varied as indicated
in Table 4, and the total number of cases is 15. Cases 1
through 4 were performed to confirm the acceleration
rate of GPGPU over conventional CPU computing, and
Case 5 was tested in order to evaluate the performance
of the new double-precision arithmetic implemented on
the GT200 GPU. The CPU computing and GPU
computing were performed with double precision and
single precision, respectively, except in Case 5.

Table 2 Example of the increase in the number of
calculations

Locations Ns
Calculations per

location
(Ns×Ns)

Total calculations
(Ns×Ns× locations)

256 33 1,089 278,784
256 65 4,225 1,081,600
256 97 9,409 2,408,704

Table 3 Hardware testing environments
Environment Env. 1 Env. 2

CPU Phenom 9750 Core i7 920
Memory 4 GB 6 GB

GPU GeForce GTX275 GeForce GTX275

Table 4 Lists of test cases
Case Env. Computing Precision Search region

size (Ns×Ns)
1 Env. 1 CPU double

1,089 (33×33),

4,225 (65×65),

9,409 (97×97)

2 Env. 1 GPU single
3 Env. 2 CPU double
4 Env. 2 GPU single
5 Env. 2 GPU double

2. Results of the performance tests
Figure 5 and 6 show the elapsed times for the above

test cases. Here, the elapsed time indicates the time just
for the process execution after the process was created.
In cases of processing by only the CPU (Cases 1 and 3),
the elapsed time increases linearly with the search
region size, whereas in cases of processing by the
GPGPU (Cases 2 and 4), the elapsed time increases
only slightly. On the other hand, the difference in the
results for the GPGPU computing between the Phenom
CPU and Core i7 CPU suggests that the performance of
the GPGPU depends not only on the GPU architecture
but also on the CPU or system architecture. The results
for Case 5 indicate that double-floating-point

Start

Load data for two images

Set or change the location to
determine the velocity

Determine the maximum correlation
and estimate the velocity

Calculate all cross-correlation
coefficients in the search region

Calculations performed
for all locations?

Yes
No

Send the data to the GPU Load data for two images
to GPU’s memory

Calculate each cross-correlation
coefficient r(i) with parallel

processing

Return the values of all
cross-correlation coefficientsLoad the values from the GPU

On CPU On GPU

Data send

Data receive

Start

Load data for two images

Set or change the location to
determine the velocity

Determine maximum correlation
and estimate velocity

Calculate a cross-correlation
coefficient r(i)

i < Ns×Ns

Calculations performed
for all locations?

Yes

Yes

No
No

Fig. 4 Flow chart of the parallelized DCC method
 for GPU computing

Fig. 3 Flow chart of the DCC method
 for CPU computing

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 108

calculation requires greater processing time than the
single-floating-point calculation, because the number of
double-precision arithmetic units of the GPU is not
sufficient to execute a large number of parallel threads.
Figure 7 shows the fractions of the elapsed time used
for CPU and GPU processing. The CPU processing time
includes the data translation time between the host
memory and the GPU memory. Although there is a
difference related to the search region size,
approximately 95% of the elapsed time was used for
GPU processing. Figure 8 shows the acceleration rates
of the GPU computing over CPU-only computing,
where rates of over 100 times and about 80 times can be
seen for the Phenom CPU and the Core i7 CPU,
respectively.

In the present study, the computing results for PIV
based on the DCC method for all cases were exactly the
same. In the case of the PIV analysis, the computational
error caused by the floating point calculation is not a
significant problem. This indicates that the precision of
the processing on GPU for the PIV is adequate.

Fig. 5 Elapsed times for Cases 1 and 3

Fig. 6 Elapsed times for Cases 2, 4 and 5

Fig. 7 Fractions of the elapsed time used for CPU

and GPU processing for Case 4

Fig. 8 Relationship between acceleration rate and

search region size for GPGPU and CPU
computing

V. CONCLUSION

A very high acceleration rate was obtained and the
processing ability was improved by the use of a
GPGPU. The performance of GPU computing
depended not only on the GPU but also on the system
architecture. Single-floating-point calculation
precision was found to be sufficient for PIV analysis.
These results indicate that the application of GPGPU
to PIV is highly effective.

REFERENCES
[1] John D. Owens, David Luebke, Naga Govindaraju,
et al. (2007), A Survey of General-Purpose
Computation on Graphics Hardware, Computer
Graphics Forum. Vol. 26, Issue 1, pp. 80-113
[2] John E. Stone, James C. Phillips, Peter L.
Freddolino, et al. (2007), Accelerating molecular
modeling applications with graphics processors, Journal
of Computational Chemistry, Vol.28, pp. 2618-2640
[3] T. Aoki (2009), CFD Applications Fully Accelerated
by GPU (in Japanese). Journal of Information
Processing Society of Japan, Vol.50, Issue 2, pp.107-
115
[4] F. Ino, J. Gomita, Y. Kawasaki and K. Hagihara
(2006), A GPGPU approach for accelerating 2-D/3-D
rigid registration of medical images. In Parallel and
Distributed Processing and Applications (ISPA), LNCS,
vol.4330, pp.939–950
[5] T.S. Wung and F.G.Tseng (1992), A color-coded
particle tracking velocimetry with applications to
natural convection, Vol.13, Experiments in Fluids,
pp.217-223
[6] Y.A.Hassan and R.E.Canaan (1991), Full-field
bubbly flow velocity measurements using a multi frame
particle tracking technique, Vol.12, Experiments in
Fluids, pp.49-60
[7] K. Okamoto, S. Nishio, T. Saga and T. Kobayashi
(1997), Standard Images for Particle Imaging
Velocimetry, Proc. PIV-Fukui'97

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000

El
ap

se
d

ti
m

e[
se

c]

Search region size

CPU(Phenom)

CPU(Core i7)

6

7

8

9

10

11

12

0 2000 4000 6000 8000 10000

El
ap

se
d

tim
e[

se
c]

Search region size

GPU with Phenom

GPU with Core i7

GPU with Core i7 (double)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

A
cc

el
er

at
io

n
ra

te
[t

im
es

]

Search region size

Phenom 9750

Core i7 920

0% 20% 40% 60% 80% 100%

1089

4225

9409

Fractions of elapsed times

Se
ar

ch
 r

eg
io

n
si

ze

GPU Processing time CPU Processing time

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 109

