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Abstract: In the present study, the ability to apply general purpose computation on graphics processing units (GPGPUs)  
to particle image velocimetry (PIV) is confirmed, and the processing speed of the PIV is accelerated by GPGPUs. Our 
code is based on the direct cross-correlation method, where one of the PIV algorithms is rewritten for GPGPU 
computing using the CUDA tool kit. The results of a performance test indicate that GPU computing for PIV 
demonstrated an excellent acceleration rate of more than 100 times greater than CPU computing while maintaining 
acceptable precision. 
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I. INTRODUCTION 

In our research, the processing speed of particle 
image velocimetry (PIV) was accelerated by general-
purpose computation on graphics processing units 
(GPGPUs), which has been considered as a new 
acceleration technique for computing. Computations 
using GPGPUs use the graphics processing unit (GPU) 
on a graphics card for not only image processing but 
also general purposes such as numerical simulation [1]. 
The acceleration of processing using GPGPUs has been 
attempted for various numerical simulations, such as 
computational fluid dynamics and medical image 
processing [1]-[4]. However, reports on the application 
of GPGPUs to PIV are rare. Therefore, we applied 
GPGPU to PIV, which is an image-based measurement 
method, and evaluated the resulting performance. The 
computational errors related to GPGPUs should be also 
examined. Since most GPUs do not have double-
precision arithmetic units, the results of computing on 
GPUs for application to PIV may have problems related 
to precision. Therefore, the results of the PIV analysis 
obtained using a GPGPU were compared to those 
obtained using a CPU. 

Particle image velocimetry is a useful tool in the 
study of transient fluid flow phenomena [5][6]. The 
velocity vectors of a fluid are obtained by measuring the 
translational displacement of tracer particle during a 
short time interval without interfering with the flow. In 
general, the direct cross-correlation (DCC) method, 
which is a PIV algorithm, offers improved accuracy as 
compared with the FTT-based cross-correlation method. 
However, the DCC method requires several process 
iterations, unlike the FTT-based cross-correlation 
method. In the case of actual analysis, as the size of the 
analysis region becomes larger, the processing time 
increases, often reaching several minutes. Since this is 
problematic in the case of practical application, the 
processing speed using the DCC method should be 

accelerated. In the DCC method, in order to determine 
the displacement of a small region, cross-correlations 
between the interrogation region and several candidate 
regions must be calculated, and the associated 
processing comprises the majority of the calculation 
costs for the whole process. The calculation of all of the 
cross correlations was parallelized and accelerated using 
a GPGPU with CUDA, which is one of the software 
development environments for GPGPUs used in the 
present study. CUDA is freely distributed by NVIDA 
and extends the C language for use with the GPU, 
which has an excellent architecture for parallelism. As a 
result of a performance test, computing on the GPU for 
application to PIV exhibits an excellent acceleration rate 
of more than 100 times greater than CPU computing. In 
this case, approximately 95% of the entire process was 
executed on the GPU.  

 

II. GPGPU 

1. GPU hardware architecture 
Figure 1 describes the architecture of the NVIDIA 

GeForce GTX 275 GPU used in this study, and Table 1 
lists its hardware specifications. The GPU chipset of the 
GeForce GTX 275 is the GT200, which can operate in 
graphics mode or parallel computing mode. In GPGPU 
computing, the parallel computing mode is used. In 
graphics processing mode, the GPU architecture 
consists of ten texture processing clusters, and, in 
parallel computing mode, the GPU architecture consists 
of ten thread processing clusters. Here, TPC stands for 
texture processing cluster in graphics processing mode 
and thread processing cluster in parallel computing 
mode. Each TPC is made up of three streaming 
multiprocessors (SMs), each of which contains eight 
streaming processors (SPs), which are either processor 
cores or thread processors. The total number of SMs on 
the GT200 GPU is thirty. Unlike the general CPU 
architectures, the GPU can perform zero-cost hardware-
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based context switching, i.e., the GPU can immediately 
switch to another thread process, and it supports over 
thirty thousand concurrent threads in hardware (see 
Table 1). However, the maximum number of concurrent 
threads depends on environmental variables such as the 
executed kernel size (program size) in the GPU. 
Although double-precision arithmetic units have been 
implemented in the GT200 GPU, only one unit is 
implemented per SM and thirty units are implemented 
per GPU. Therefore, the performance of the double-
precision arithmetic may be poor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 NVIDIA GeForce GTX 275 GPU architecture in 
parallel computing mode 

 
Table 1 NVIDIA GeForce GTX 275 hardware specifications 
Texture processor clusters (TPCs)  10 
Streaming multiprocessors (SMs) per TPC  3 
Super function units (SFUs) per SM  2 
Streaming processors (SPs) per SM  8 
Total SPs (Cores) 240 
Maximum concurrent threads per SM 1,024 
Total maximum concurrent threads 30,720 
Double-precision arithmetic units per SM 1 
Peak floating point performance GFLOPS 933 
Global memory size  869 MB 
Shared memory per SM 16 KB 
Registers per SM  16,384 registers 

 

2. Software development environment for GPGPU 
Cg is a conventional software development tool kit 

for GPU application software. Because the Cg is the 
specifically designed programming tool kit for 
computer graphics, it is not suitable for the development 
of GPGPU application software. However, recently, 
software development environments, such as CUDA 
and OpenCL, which consist of a complier, libraries, and 
useful tools for GPGPUs have been made freely 
available. CUDA is a C language development 
environment for NVIDA CUDA-enabled GPUs but 
OpenCL can be used for both NVIDA and ATI GPUs, 
which support the OpenCL architecture. In the present 
study, we used CUDA as the development tool of the 
program code for GPGPU computing. 

III. PIV ALGORITHM 

1. Direct cross-correlation (DCC) method 
In PIV, the velocity information is estimated using 

two consecutive images detected by a camera. Figure 2 
shows an example of standard PIV consecutive images 
[7], and illustrates the procedure of the direct cross-
correlation method. In order to extract the velocity at 
each location, a normalized cross-correlation coefficient 
between the location (x, y) in the first image and the 
location (x+dx, y+dy) in the second image is defined as 
follows: 

 
(1) 

 
 
where f(x,y) and g(x,y) are the intensities at location 
(x,y) in the first image and the second image, 
respectively, and N denotes the size of a side of the 
interrogation region, which is determined considering 
the concentration of tracer particles and the maximum 
velocity of the flow. This cross-correlation coefficient is 
used to estimate the translational displacements of tracer 
particles between two consecutive images. The 
displacement at location (x,y) between two images is 
estimated as follows. First, the values of the above 
cross-correlation coefficient are calculated between 
location (x,y) in the first field and the possible point 
(x+dx,x+dy) in the second field. Second, the dx and dy 
values of the displacement are changed, and the cross-
correlation coefficient is recalculated. By repeating this 
procedure, the best estimate of the translational 
displacement of the tracer particles is determined as the 
pair (dx,dy) that maximizes the correlation coefficient. 
The global velocity profile of the flow can be obtained 
by repeating the above computation at every location. 
Figure 3 shows a flow chart of the DCC method. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Overview of the procedure of the DCC method 
 

2.  Amount of computations in the DCC method 
In Fig. 2, Ns denotes the size of one side of the 

search region. In order to obtain one velocity vector in 
the DCC method, the correlation coefficient is 
calculated Ns×Ns times. When Ns = 33 and the number 
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of locations required in order to determine the velocity 
vectors is 256, the number of calculations per location 
reaches 1,089, and the calculation is performed a total 
of 278,784 times during processing. Table 2 shows an 
example of the increase in the number of calculations. 
As Ns increases, the required calculation amount 
increases extremely (proportional to Ns×Ns). In the 
DCC method, the computational cost required to 
calculate all of the cross-correlation coefficients 
between the interrogation region and all of the candidate 
regions in the search region is enormous. In the case of 
our code for the DCC PIV, the processing time required 
to calculate the cross-correlation coefficients accounts 
for approximately 99% of the total processing time. 
Since the cost is expected to be substantially reduced 
and the processing speed is accelerated by parallelizing 
the calculation process, the associated part of our code 
based on the DCC algorithm was rewritten to the 
GPGPU computing code using the CUDA tool kit. A 
flow chart of the parallelized DCC method using 
GPGPU is shown in Fig. 4.  

 

IV. PERFORMANCE TESTS 

1. Testing conditions 
Tables 3 and 4 show, respectively, the testing 

environments and test cases used to evaluate the 
performance of the GPU computing for PIV. In Cases 1 
through 5, the search region size was varied as indicated 
in Table 4, and the total number of cases is 15. Cases 1 
through 4 were performed to confirm the acceleration 
rate of GPGPU over conventional CPU computing, and 
Case 5 was tested in order to evaluate the performance 
of the new double-precision arithmetic implemented on 
the GT200 GPU. The CPU computing and GPU 
computing were performed with double precision and 
single precision, respectively, except in Case 5.  

Table 2 Example of the increase in the number of 
calculations  

Locations Ns
Calculations per 

location 
(Ns×Ns) 

Total calculations 
(Ns×Ns× locations) 

256 33 1,089 278,784 
256 65 4,225 1,081,600 
256 97 9,409 2,408,704 
 

Table 3 Hardware testing environments  
Environment Env. 1 Env. 2 

CPU Phenom 9750 Core i7 920 
Memory 4 GB 6 GB 

GPU GeForce GTX275 GeForce GTX275
 

Table 4 Lists of test cases 
Case Env. Computing Precision Search region 

size (Ns×Ns)
1 Env. 1 CPU double 

1,089 (33×33),

4,225 (65×65),

9,409 (97×97)

2 Env. 1 GPU single 
3 Env. 2 CPU double 
4 Env. 2 GPU single 
5 Env. 2 GPU double 
 

2. Results of the performance tests 
Figure 5 and 6 show the elapsed times for the above 

test cases. Here, the elapsed time indicates the time just 
for the process execution after the process was created. 
In cases of processing by only the CPU (Cases 1 and 3), 
the elapsed time increases linearly with the search 
region size, whereas in cases of processing by the 
GPGPU (Cases 2 and 4), the elapsed time increases 
only slightly. On the other hand, the difference in the 
results for the GPGPU computing between the Phenom 
CPU and Core i7 CPU suggests that the performance of 
the GPGPU depends not only on the GPU architecture 
but also on the CPU or system architecture. The results 
for Case 5 indicate that double-floating-point 
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Fig. 4 Flow chart of the parallelized DCC method 
      for GPU computing 

Fig. 3 Flow chart of the DCC method 
      for CPU computing 
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calculation requires greater processing time than the 
single-floating-point calculation, because the number of 
double-precision arithmetic units of the GPU is not 
sufficient to execute a large number of parallel threads. 
Figure 7 shows the fractions of the elapsed time used 
for CPU and GPU processing. The CPU processing time 
includes the data translation time between the host 
memory and the GPU memory. Although there is a 
difference related to the search region size, 
approximately 95% of the elapsed time was used for 
GPU processing. Figure 8 shows the acceleration rates 
of the GPU computing over CPU-only computing, 
where rates of over 100 times and about 80 times can be 
seen for the Phenom CPU and the Core i7 CPU, 
respectively.  

In the present study, the computing results for PIV 
based on the DCC method for all cases were exactly the 
same. In the case of the PIV analysis, the computational 
error caused by the floating point calculation is not a 
significant problem. This indicates that the precision of 
the processing on GPU for the PIV is adequate. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Elapsed times for Cases 1 and 3 
 
 
 

 
 
 
 
 
 
 

 
Fig. 6 Elapsed times for Cases 2, 4 and 5 
 
 
 
 
 

 
 
 
 
 
 
Fig. 7 Fractions of the elapsed time used for CPU 

and GPU processing for Case 4 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Relationship between acceleration rate and 

search region size for GPGPU and CPU 
computing 

 

V. CONCLUSION 

A very high acceleration rate was obtained and the 
processing ability was improved by the use of a 
GPGPU. The performance of GPU computing 
depended not only on the GPU but also on the system 
architecture. Single-floating-point calculation 
precision was found to be sufficient for PIV analysis. 
These results indicate that the application of GPGPU 
to PIV is highly effective. 
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