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Abstract: We develop a new statistical reconstruction method for X-ray computed tomography. We utilize the knowledge that
the human body is composed of a finite number of material kinds and CT values depend on the material classes. The problem
is formulated in the framework of maximum a posterior (MAP) estimation and tomographic image and material classes are
simultaneously estimated. To minimize the MAP objective function, we use an expansion algorithm which is a variant of graph
cuts.
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I. INTRODUCTION

Computed tomography (CT) is an important medical imaging
technology, and a number of CT algorithms for reconstructing
tomographic image from a series of X-ray projections have
been developed [1–6]. One of the difficulties of CT tech-
niques stems form the requirement for the reducing X-ray ex-
posure in order to avoid overdoes of radiation. However, such
limitation on the X-ray exposure would make the observed
data noisy or make the amount of the observed data insuffi-
cient. Thus, the classical filtered back projection (FBP) and
maximum likelihood (ML) solutions become ill-conditioned
and unstable. We resolve this ill-poseness by introducing suit-
able prior knowledge that regularizes the ML solution. As
the prior knowledge, we assume that X-ray attenuation coef-
ficients depend on the material classes and the human body is
composed of a finite number of material classes; they include
soft tissue (fat), normal tissue (muscle), and born.

Another difficulty of CT techniques is metal artifact. It
is known that the presence of high density objects such as
metal prostheses and dental fillings cause streak or star arti-
facts when the FBP algorithm is applied [1, 3, 5]. The most
popular approach to metal artifact reduction (MAR) is the
projection completion method [1]. Although this approach is
effective for MAR by detecting and interpolating the metal re-
gions in the sinogram, information from the projections pass-
ing through metal may be lost. Even worse, it is not easy
to determine the metal regions, especially when two or more
metals are inserted. We tackle this MAR problem by a sta-
tistical approach, in which we introduce a material class of
implanted metal.

Although there are studies that assume the material-class-
dependent X-ray attenuation [3–5], most of them estimate

the tomographic image and the material classes in a separate
manner. Since the estimation of reconstructed image and the
material classes are closely related, such separate estimation
may deteriorate the reconstruction performance. Therefore,
simultaneous estimation for a tomographic image and mate-
rial classes in term of a consistent cost function is desired.
One of such solutions was proposed in [6], which was based
on Bayesian inference. Their model consists of the prior prob-
ability of the X-ray attenuation coefficients and the likelihood
that describes the observation process given X-ray attenua-
tion coefficients. However, due to the high-dimensionality
and nonlinear dependency of random variables, they use a
simple model and approximation method. In this study, we
consider to use a more realistic observation model and a suit-
able prior distribution. The tomographic image and material
classes are estimated by maximum a posteriori (MAP) estima-
tion. Especially, a variant of the graph cut algorithms called
an expansion algorithm [7–9] is used for an efficient and ac-
curate MAP estimation.

II. ALGORITHM

Suppose we have T projections D = fy(1); � � � ;y(T )g and
the tth projection is represented by y(t) = fy(t)

1 ; � � � ; y(t)
I g,

where y(t)
i denotes the number of photons sensed at detec-

tor i when projected from a certain direction θ(t). Our aim
is to reconstruct a tomographic image represented by a J-
dimensional vector x = fx1; � � � ; xJg obtained by raster
scanning the attenuation coefficients.
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Figure 1: Geometry of CT. xj is the attenuation coefficient
at pixel j, and l(t)ij is the intersection length at pixel j when
projected from the direction θ(t) to the detector i.

1. Observation Model

The data acquisition model is written by

ŷ
(t)
i = b

(t)
i expf�

J∑
j=1

l
(t)
ij xjg. (1)

Here, ŷ(t)
i denotes the expected number of detected photons,

b
(t)
i is the number of photons that would be detected in the

absence of any absorber, and l(t)ij is the effective intersection
length of projection i with pixel j when projected from the
direction θ(t). Fig. 1 illustrates the data acquisition process.

The main source of the fluctuation in the observation is
assumed to be arisen from a quantum nature of X-ray pho-
tons [2–4]. We represent the fluctuation by an independent
Poisson distribution over the measurements:

p(D|x) =
T∏
t=1

I∏
i=1

p(y(t)
i |x) =

T∏
t=1

I∏
i=1

ŷ
(t)y

(t)
i

i e−ŷ
(t)
i

y
(t)
i !

. (2)

2. Conditional Prior

We incorporate some a priori knowledge in reconstruction of
tomographic image. We assume that each element of x is
classified into different material classes: air, soft tissue, nor-
mal tissue, bone, and implanted metal. We denote the number
of classes by K (here, K = 5). Thus, the prior p(x) is repre-
sented via variables z = fz1; � � � ; zJg:

p(x) = p(x|z)p(z) =
J∏
j=1

p(xj |zj)p(zj); (3)

Input : Observation D
Output : Estimate of CT value x̂

1 : until Convergence criterion is satisfied do
2 : Update xj to minimize (9) by SCG method
3 : Update zj to minimize (10) by graph cuts
4 : x̂ �j

Figure 2: Proposed algorithm for CT reconstruction.

where zj is aK-dimensional binary random vector whose kth
element zjk ∈ f0; 1g is 1 when the pixel j belongs to the kth
material class and other elements zjk are 0. Since each pixel
belongs to a single material class,

∑
k zjk = 1 is satisfied.

When the material class is given, the attenuation coeffi-
cients x are assumed to obey a Gaussian distribution:

p(xj |zj) =
K∏
k=1

N (xj |νk; r2k)zjk ; (4)

where νk and r2k denote the mean and the variance of the
Gaussian distribution, respectively, and r2k was determined ir-
relevant to the material class (Table 1).

Although the class-wise means νk should be calibrated in
advance, this task would not be required for every subject be-
cause the values of νk are expected not to vary significantly.
Variations of νk due to the unreliability of the CT scanner
or the fluctuation of the CT values over different individu-
als, different organs, or different tissues are assumed to be
captured by the randomness of Gaussian distribution, whose
uncertainty is controlled by its variance r2k.

3. Prior for Class

We give the prior of the material class as the following Boltz-
mann distribution:

p(z) =
1
Z

expf�E(z)g; (5)

where Z is a normalizing constant and the energy is defined
by

E(z) = �
K∑
k=1

(
J self
k

J∑
j=1

zjk + J inter
k

J∑
j=1

∑
s∈η(j)

zjkzsk
)
. (6)

Here, �(j) represents the set of pixels adjacent to pixel j, and
J self and J inter are nonnegative constants that control the char-
acteristics of the class prior. The Boltzmann distribution takes
a high probability when energy E(z) is low. Therefore, the
first term of the energy function represents the relative pro-
portion of each material: large J self promotes zjk = 1. The
second term defines the degree of correlation between neigh-
boring pixels within the material, so as to control the spatial
continuity.
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Table 1: Parameter settings.
k: material νk r2k (in §1) J self

k (in §1) J inter (in §1) r2k (in §2) J self
k (in §2) J inter (in §2)

1: air 0.000 10−6 6 30 10−6 0 50
2: soft tissue 0.018 10−6 8 30 10−6 20 50
3: normal tissue 0.022 10−6 5 30 10−6 10 50
4: bone 0.050 10−6 10 30 10−6 10 50
5: metal 0.120 � � � 10−6 20 50

4. MAP Estimation

According to the Bayes theorem, the posterior distribution for
x and z is proportional to the product of the prior distribution
and likelihood function:

p(x; z|D) ∝ p(D|x)p(x|z)p(z) (7)

We determine the variable x and z by maximizing the poste-
rior probability. Taking the negative logarithm of (7), we can
find the solution as a minimizer of the following objective
function:

L(x; z) = � ln p(D|x)� ln p(x|z)� ln p(z). (8)

Since the simultaneous optimization for continuous variable
x and discrete variable z is intractable, we iteratively update
each component of the objective function:

x∗ = arg min
x
L(x; z∗) (9)

z∗ = arg min
z
L(x∗; z). (10)

Here, x∗ is updated using the scaled conjugate gradient algo-
rithm (SCG) and the z∗ is updated by an expansion algorithm,
which is a variant of graph cuts [7–9]. The algorithm is ter-
minated when the relative change of x’s norm is smaller than
a predetermined threshold 10−5.

III. EXPERIMENTAL RESULTS

We tested our method by reconstructing phantom images in
two severe situations. In the first experiment, the phantom did
not include metal, but the number of projections was severely
restricted. This setting was prepared to see the reconstruc-
tion performance when X-ray exposure was minimized. In
the second experiment, metal was inserted into the phantom.
This setting was to see how metal artifacts could be reduced
by our method.

An attenuation coefficient x can be transformed into
the Hounsfield unit (HU) by the following transformation:
1000(x � x0)/x0, where x0 (= 0.02) is the attenuation
coefficient of water (H2O).

1. Phantom Data Without Metal

A phantom was created as shown in Fig. 3(a) (471× 353 mm
ellipse). Parallel beam acquisition was simulated using 367

(a) Ground Truth (b) FBP (17.92 dB)

(c) ML (20.96 dB) (d) Proposed (22.58 dB)

Figure 3: Phantom without metal. The window used is
[�500; 500] HU so that the corresponding xj values are
within [0.01, 0.03].

detectors and 32 projection angles over 180◦. The blank scan
value bi was set to 105. Images of size 256× 256 pixels were
reconstructed. The following three different approaches were
compared: filtered back projection (FBP), maximum likeli-
hood (ML) [2], and our proposed method. The model param-
eters were fixed at hand-tuned values: r2k = 10−6, J inter = 30,
J self

1 = 6, J self
2 = 8, J self

3 = 5, J self
4 = 10 (Table 1).

The estimation results are shown in Fig. 3. The panels
show (a) the ground truth image, reconstructed images by
(b) FBP, (c) ML, and (d) the proposed method. The perfor-
mances were measured by peak signal-to-noise ratio (PSNR),
which is shown at the bottom of each panel. The PSNR of
our algorithm (22.58 dB) is higher than those by the existing
algorithms. The reconstruction results of FBP and ML are
very noisy due to the limited number of projections. How-
ever, our result is smooth thanks to the prior incorporating the
knowledge of material classes knowledge.
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(a) Ground Truth (b) FBP (24.29 dB)

(c) PCLIS (30.36 dB) (d) ML (28.25 dB)

(e) Proposed (34.27 dB)

Figure 4: Phantom without metal. The window used is
[�500; 500] HU so that the corresponding xj values are
within [0.01, 0.03].

2. Phantom Data With Metal Inserted

A head phantom (ellipse 472× 436 mm) shown in Fig. 4 was
created for the experiment with metal inserted; it includes
three dental fillings (three disks with diameters 18, 19, and
23 mm ) made of metal. Parallel beam acquisition was sim-
ulated using 185 detectors and 1791 projection angles over
180◦. The blank scan value bi was set to 105. The size of
reconstructed images was 256× 256 pixels.

Reconstruction was performed by FBP, ML, the pro-
jection completion method based on linear interpolation in
the sinogram (PCLIS) [1], and our proposed method. The
model parameters were set at hand-tuned values: r2k = 10−6,
J inter = 50, J self

1 = 0, J self
2 = 20, J self

3 = 10, J self
4 = 10,

J self
5 = 20 (Table 1).

The reconstruction results are shown in Fig. 4. The panels
show (a) the ground truth, reconstructed images by (b) FBP,
(c) PCLIS, (d) ML, and (e) the proposed method. The cor-
responding PSNR is shown at the bottom of each panel. Our
algorithm achieved the highest PSNR (34.27 dB) in the al-
gorithms we compared. Good smoothing within each region

was obtained by our method.

IV. CONCLUSION

In this article, we have proposed a new CT reconstruction
method based on a statistical approach. The key point of our
method was the introduction of the material class which al-
lows the existence of extremely high-dense objects such as
metal. Our new method enabled significant reduction of the
metal artifacts compared to the existing algorithms. Further-
more, it showed better performance when the metal was not
inserted but the signal-to-noise ratio was low due to the lim-
ited number of projections. Besides our material class model
is beneficial for improving the reconstruction image quality, it
would be helpful to detect the tumor and to identify anatomi-
cal structures owing to our material class segmentation based
on CT values, even in the existence of metal.
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