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Abstract: We introduce sparse encoding into the autoassociative memory model with replacing units. We
search by computer simulation the optimal number of replacing units in two terms; the memory capacity and
the information capacity of the network. We show that the optimal number of replacing units to maximize
the memory capacity and the information capacity decreases as the firing ratio decreases, and that the
difference of the memory capacity between sparse encoding and non-sparse encoding becomes small as the
number of replacing units increases.
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1 Introduction

The associative memory model is one of neural
network models made by imitating the form of mem-
ory in human brain, and consists of neurons and
synapses.

Properties of an associative memory model largely
depend on how items are encoded in pattern vectors
to be stored. When most of the components of en-
coded patterns are 0 and only a small ratio of the
components are 1, the encoding scheme is said to be
sparse. Rolls(1987) observed that sparse encoding
was realized in the hippocampus, and he proposed
an associative memory model of the hippocampus[1].
Amari(1989) gave a mathematical analysis of asso-
ciative memory models with sparse encoding[2]. He
proved that the memory capacity (the maximum
number of patterns to be stored in the network in
the form of its equilibria) and the information ca-
pacity (the total amount of information stored) of
the sparsely encoded associative memory model are
much larger than the ordinary non-sparse encoding
scheme. Moreover, he proved that the sparsely en-
coded associative memory model had a large basin
of attraction around each memorized pattern, when
and only when an activity (the number of excited
components) control mechanism is attached to it.

If the number of memorized patterns surpasses
the memory capacity, the network cannot recall any
memorized pattern due to the overloading[3]. This
phenomenon is called catastrophic forgetting.

Eriksson et al.(1998) discovered newborn neurons
in the hippocampus, where the associative mem-
ory was considered to be realized[4]. Date and Ku-
rata(2008) reported that the network, in which a

fixed number of units are replaced by newborn ones
while the model learns one pattern, can keep up
memorized patterns studied recently without catas-
trophic forgetting[5]. They showed that the optimal
number of replacing units to maximize the memory
capacity is about 3, and that it is independent of
the network size. Komatsu et al.(2009) analyzed the
associative memory model with replacing units by
utilizing statistical mechanics[6]. They showed that
replacing 3.2 or more units could make the network
avoid catastrophic forgetting and that replacing 6.9
units is optimal to maximize the memory capac-
ity. The difference between the results of Date and
Kurata(2008) and that of Komatsu et al.(2009) is
due to the order of selection of units to be replaced.
While Date and Kurata(2008) set units replaced in
a fixed order repeatedly, Komatsu et al.(2009) set
units replaced randomly with a certain probability.

Now we introduce sparse encoding into the as-
sociative memory model with replacing units. We
search the optimal number of replacing units to
maximize the memory capacity and the informa-
tion capacity of the model by using computer sim-
ulation. The replacing order is the same as Date
and Kurata(2008). We treat in the present paper
only an autoassociative memory model, which re-
calls a memorized pattern from its noisy version.
We show that the optimal number of replacing units
decreases as the firing ratio decreases, and that in-
crease of the number of replacing units reduces the
difference of the memory capacity between sparse
encoding and non-sparse encoding, but then makes
the information capacity of sparse encoding smaller
than that of non-sparse encoding.
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Fig. 1: The autoassociative memory model. The
units are interconnected by the network of synapses
with the synaptic strength wij from unit j to unit
i. Each unit i has two states, xi = ±1.

2 Associative memory model

Let us consider a neural nework of n mutually
connected formal neurons. We assume that all the
neurons work synchronously at discrete-times t =
1, 2, · · ·. The associative memory model consists of
memorizing process and recall process.

2.1 Memorizing process

The autoassociative memory model is a network
whose connection weight matrix W = {wij} is de-
termined by

wij =
m∑

µ=1

si
(µ)sj

(µ), (1)

from m patterns s(µ) = (s1
(µ), s2

(µ), · · · , sn
(µ))T, µ =

1, 2, · · · , m, to be stored, where s
(µ)
i is the i-th com-

ponent of s(µ). wij is the weight of connection from
the j-th neuron to the i-th neuron and it is, there-
fore, symmetric. Regardless of this definition, wii

is assumed to 0. This learning process is local; the
increment for connection wij does not depend on
the global structure of the state or past memories,
but only on si

(µ) and sj
(µ). It is fast, and does not

need to learn each memory repeatedly.
This network now functions as an associative mem-

ory. For example, if started from an initial state
which somewhat resembles state s(1) and which re-
sembles other s(µ)(µ 6= 1) very little, the state will
evolve to the state s(1). The state s(1) is evoca-
ble memory, and the system correctly reconstructs
an entire memory from any initial partial informa-
tion, as long as the partial information is sufficient
to identify a single memory. Detailed properties of
the collective operation of this network have been
studied extensively[3].

2.2 Recall process

Let x(t) = (x1(t), x2(t), · · · , xn(t))T be a vector
whose component xi(t) denotes the output of the
i-th neuron. This vector is called the state vector
of the network.

In our network of the associative memory model
(Fig.1), each unit i has two states, and is described
by variable xi(t) = ±1. The instantaneous state of
the system of n units can be thought of as an n-
dimensional vector having components xi(t). The
units are interconnected by a network synapses, with
a synaptic strength wij from unitj to unit i. The
instantaneous output to unit i is

xi(t + 1) = sgn(
n∑

j=1

wijxj(t)), (2)

where xj(t) is the present state ±1 of unit j. This
equation defines the state transition of the network
from the state xi(t) at discrete-time t to the next
state xi(t+1). The function sgn(u) denotes the unit
signum function,

sgn(u) =
{

1, u > 0,
−1, u ≤ 0.

(3)

A neuron is excited when a weighted sum of its in-
puts exceeds 0. A neuron emits output 1 when it is
excited, and its output is −1 when it is not excited.

The state of the system changes in time; each
unit i readjusts its state, setting xi(t) = ±1 ac-
cording to whether

∑n
j=1 wijxj(t), the input to i

at this moment, is greater or less than 0. This al-
gorithm defines the time evolution of the state of
the system. For any symmetric connection matrix
{wij} : wji, there are stable states of the network of
units. Starting from any arbitrary initial state, the
system reaches a stable state and cease to evolve.

2.3 Catastrophic forgetting

There is a critical memory capacity in the con-
ventional associative memory model. The mem-
ory capacity for one-half coded random memories is
given by Amit et al.(1985) as about 0.138n, where
n is the number of units[3]. If the number of mem-
orized patterns surpasses the memory capacity, the
network cannot recall any memorized patterns due
to the overloading[3]. This phenomenon is called
catastrophic forgetting. Fig.2 shows catastrophic
forgetting; the network which consists of n = 1000
neurons could recall all the memorized patterns for
µ < 140, but at µ = 140, forgetting started, and no
memorized pattern could be recalled correctly after
µ = 200, i.e., the network could not recall even the
most recent memory.
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Fig. 2: Catastrophic forgetting on the conventional
autoassociative memory model with 1000 neurons.

If the dynamics of weight connections of the net-
work have decay or saturation, the catastrophic for-
getting does not occur, and the network can keep
recent memories[7]. But, as yet, there is no conclu-
sive experimental evidence for the existence of such
a system in human brain.

3 Rebirth neuron and the modeling;
replacing units

Eriksson et al.(1998) discovered newborn neurons
in the hippocampus, where the associative mem-
ory was considered to be realized[4]. Date and Ku-
rata(2008) reported that the one-half coded asso-
ciative memory network, in which a fixed number of
units were replaced by newborn ones while learning
one pattern, could keep up memory patterns stud-
ied recently without catastrophic forgetting[5]. This
corresponds to resetting the connection weights wij =
wji = 0, j = 1, 2, · · · , n, for replaced neurons i.
Units were replaced from the oldest one first, i.e.,
they were always replaced in the same order.

4 Sparse encoding

We consider the case where patterns to be stored
are generated independently and randomly under
the condition that they have a fixed activity. The
encoding that the number of active components in
s(µ) is negligibly small compared to n is said to be
sparse. s(µ) are independent random vectors sub-
ject to a common probability distribution. More
precisely, s(µ) are generated in such a manner that,
nq, (0 ≤ q ≤ 1) components, randomly chosen among
n components, take 1− q and all the other compo-
nents are put equal to −q.

Amari(1989) proved that the memory capacity
CM of the associative memory model increases as
encoding sparser[2]. One pattern to be stored has
an average information content H(q) with the oc-

curence probability q as below

H(q) = −q log2 q − (1− q) log2(1− q). (4)

So, one sparsely encoded pattern s(µ) includes a
smaller amount of information than non-sparse en-
coding case. However, Amari(1989) proved that the
total amount of information stored in the network,
or the information capacity increases as encoding is
sparser[2]. This is due to the increase of the memory
capacity in the sparse encoding case.

Here, We define the information capacity CI of
the network as below,

CI = H(q)CM. (5)

5 Simulation

5.1 Settings

Simulations were carried out on a computer for
n = 1000 and 2000 by varying the number R of
replacing units and the firing ratio q to maximize
the memory capacity and the information capacity.

We applied equation(1) with replacing units to
memorizing process. For simplicity, we assume that
the total number of neurons does not change over
time. Every time the network memorizes a new pat-
tern, R neurons die and the same number of neurons
are born. The number m of memorized patterns de-
pends on the number R of replacing units as below,

m =
n

R
. (6)

We also used a non-integer value for R. In this case,
we define the number r(t) of replacing units at t as
below,

r(t) = int(R(t + 1))− int(Rt), (7)

where int(x) is the function which truncates a num-
ber after the decimal point. We used the memorized
patterns for the initial states in recall process. Since
the firing ratio calcurated with equation(3) couldn’t
keep the constant value q, the top nq neurons in de-
scending order of the sum of weighted inputs were
let to fire. The proximity of the state s(µ) of the
memorized pattern and the state x(µ) of the recalled
pattern was measured by the direction cosine

cos θ =
s(µ) · x(µ)

‖s(µ)‖‖x(µ)‖ , µ = 1, 2, · · · ,m. (8)

We counted the number of successfully recalled mem-
ories in which the proximity was larger than 0.8.
Because the system has the finite state transitions,
the state is always supposed to reach an equilibrium
or a periodical solution, and the period is known to
be no more than 2. Here we assume that the system
is forced to stop when the present state equals the
second to last one in recall process.
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Fig. 3: The results of simulation to maximize the
memory capacity. The horizontal axes are the num-
ber R of replacing units. The vertical axes are the
memory capacity CM. The 5 points represent the
each optimal number in the firing ratio q from 0.1
to 0.5.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10

th
e 

to
ta

l a
m

ou
nt

 o
f i

nf
or

m
at

io
n 

st
or

ed

the number of replacing units

q=0.1
q=0.2
q=0.3
q=0.4
q=0.5

(a)n = 1000

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10

th
e 

to
ta

l a
m

ou
nt

 o
f i

nf
or

m
at

io
n 

st
or

ed

the number of replacing units

q=0.1
q=0.2
q=0.3
q=0.4
q=0.5

(b)n = 2000

Fig. 4: The results of simulation to maximize the
information capacity. The horizontal axes are the
number R of replacing units. The vertical axes are
the information capacity CI. The 5 points represent
the each optimal number in the firing ratio q from
0.1 to 0.5.

5.2 Results

Fig.3 shows that the sparsely encoded associa-
tive memory model with a small number of replac-
ing units for R < 4 had a larger memory capacity
than the non-sparsely encoded one, i.e., q = 0.5, but
there was little difference of the memory capacity
between sparse encoding and non-sparse encoding
after R ≈ 6. It turned out that the optimal R to
maximize the memory capacity decreased as the fir-
ing ratio decreased; R ≈ 1 for q = 0.1, R ≈ 2 for
q = 0.2, R ≈ 2.6 for q = 0.3, R ≈ 3.7 for q = 0.4 or
q = 0.5. As shown in Fig.3(a), n = 1000, and (b),
n = 2000, the optimal R seemed to be independent
of the size of the network.

Fig.4 shows that the sparsely encoded associative
memory model with a small number before R ≈ 2
had also a larger information capacity than the non-
sparsely encoded one, but, after R ≈ 6, the infor-
mation capacity of sparse encoding became smaller
than that of non-sparse encoding. It turned out that
the optimal R to maximize the information capacity
decreased as the firing ratio decreased, and it was
about the same number as to maximize memory ca-
pacity. As shown in Fig.4(a) and (b), the optimal
R also seemed to be independent of the size of the
network.

6 Conclusion

We introduced sparse encoding into the associa-
tive memory model with replacing units. We re-
ported the optimal number of replacing units to
maximize the memory capacity and the informa-
tion capacity of the model by using computer sim-
ulation. The sparsely encoded associative memory
model with a small number of replaced units has
also a larger memory capacity and a larger infor-
mation capacity than the non-sparsely encoded one.
We showed that the optimal number of replacing
units decreases as the firing ratio decreases, and that
increase of the number of replacing units reduces the
difference of the memory capacity between sparse
encoding and non-sparse encoding, but then makes
the information capacity of sparse encoding smaller
than that of non-sparse encoding. We also found
that the optimal number of replaced units was in-
dependent of the size of the network.
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