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Abstract: We propose a new method to model Hebbian Postulate with the intension of developing new learning 
algorithm based on it. The propose method integrate the Hebbian Postulate with Homeostatic Plasticity to avoid the 
node saturation of the conventional Hebbian based learning algorithms. Moreover the completely novel view of the 
brain as a network of agents with large number of constituent components, signal propagation within the network and 
complete elimination of weight components are main features that distinguish our method with the conventional 
approaches while making our model much closer to the biologically supported learning environment.  
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I. INTRO DUCTIO N 

With the advancement of Information Technology,  

the world has being dreaming of imitating human 

cognitive system on machines. As an attempt of it, 

Artifi cial Neural Network, Fuzzy Logic, and Collective 

Intelligence are some of those technologies which have 

been evolved in mainly with this aspect. Artificial  

Neural Network is still considered as the main 

technology that reasonably imitates the human learning 

and memory formation. Artificial Neural Network has  

composed and evolved with many learning algorithms 

thereafter. Among many other learning rules, Hebbian 

learning rule is considered as the most effective learning 

rule that is supported by the biological findings. 

Hebbian learning rule is derived from the Hebbian 

Postulate which is based on the correlated activities of 

presynaptic neuron and postsynaptic neuron. In Hebbian 

Postulate, Hebb [1] says that “When an axon of cell A is 
near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process 
and metabolic change takes place in one or both cells 
such that A’s efficiency, as the one of the cells firing B, 
is increased”. 

 It is very interesting to note that it has not been 

mentioned anything about what would happen when the 

cell A is not correlated with the cell B. One can argue 

that either it may decrease the correl ated firing rate o f 

the cell A  and the cell B or there might be no 

significant changed to the current correlated firing rat e 

of the cell A and the cell B when they become 

uncorrelated. The Hebbian learning algorithm is based 

on the first assumption and its basic mathematical  

formula is shown in “ (1)”.  

 

          jiij xxη)t(wΔ =               (1) 

 

jx  is the output of the presynaptic neuron, ix   is 

the output of the postsynaptic neuron, η  is the 

learning rate and ijw  is the strength of the connection 

between presynaptic neuron and postsynaptic neuron.  

It can be seen that correlated input patterns will 

influence the neuron's weight and eventually produce 

the largest output. On the other hand weight strength of 

the uncorrelated neurons will tend to zero for 

uncorrelated input patterns. Either this unbounded 

increase of the strength of presynaptic and postsynaptic 

connectivity or the decrease of strength of the 

connectivity makes to lose the sensitivity of these 

neurons to external inputs. This issue is known as node 

saturation, and it can be seen in many Hebbian Postulate 

based learning algorithms, Williams and Noble [2]. To 

overcome this critical issue, many versions of Hebbian 

learning have been derived, some of those are Rate-

based Hebbian learning, Spike based Hebbian learning, 

Gerstner and Kistler [3] and Differential Hebbian 

learning rule, Kosko [4]. Critical analysis on these 

learning algorithms, we can identify that they are based 

on six important factors, namely, locality, co-operativity, 

synaptic depression, boundedness, competition and 

long-term stability, Gerstner and Kistler [3]. The factor 

boundedness has been introduced mainly to eliminate 

this node saturation issue and it has been implemented 

as the concept of weight normalization. Basically it is 

an adjustment to weight components by a calculat ed 

parameter to bring it back a saturated node to 

unsaturated status, Williams H. and Noble[2], Abbott 

and Nelson [5], even though these updating 

significantly improve the signal propagation within the 
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network, it has also damaged to the learning of the 

neural network and its performances, Williams H. and 

Noble [2], Williams [6]. Therefore, it is still a research 

challenge for researches to find appropriate learning 

algorithm based on Hebbian Postulate which is also 

supported by biological findings. In our article we 

propose a new approach to study Hebbian Postulate 

with the aim of developing more effective learning 

algorithm. Our study concentrate on the latter 

assumption that is there might be no significant changed 

(decreased) to the current correl ated firing frequency of 

the cell A and cell B when they become uncorrelated.  

We propose to integrate Homeostatic Plasticity with the 

Hebbian Postulate instead of introducing weight 

normalization concept as a boundednes factor.   

According to biologist while extremely large stimuli  

take neurons’ firing frequency into very high firing 

frequency, extremely low stimuli may take neurons’ into 

very low firing frequency, however as per biology,  

although fluctuations to external and internal stimuli are 

necessary for learning, it is also required to maintain the 

neuron’s firing frequency in a feasible range.  

Homeostatic Plasticity is the mechanism that helps 

neurons to maintain their fluctuations in a feasible 

range, Turrigiano [7]. The significant feature of this 

process is it decreases the firing frequency of the neuron 

when it is extremely high and similarly it increases the 

firing frequency of neuron when its firing frequency is  

very low. This is supposed to be achieved through the 

change of neurons’ electri cal and, morphological  

properties and ionic concentrations. For an example, 

when a neuron is in high firing frequency, Homeostatic 

Plasticity closes down ca+2 ion channels to decrease the 

ca+2 ion concentration which in turn reduces the 

amount of neurotransmitter release and thereby the 

firing frequency of the neuron. On the other hand, when 

the neuron firing frequency is very low, it opens up 

ca+2 ion channels to increase the ca+2 ion 

concentrations in order to increase the amount of 

neurotransmitter rel ease, Nicholls and Martin [8].  

 

II. METHO D 

We understand nervous system as a network o f 

neurons; each neuron is an agent consists of a large 

number of constituent elements which work as 

synapses. A synapse can be either a transmitter or a 

receptor. A model neuron, in our study is shown in fig. 

1. The propose model neuron enables synapses to have 

two dynamic statuses, either active or inactive. When a 

receptor receives a signal from a transmitter in another 

neuron, the receptor propagates the signal to a 

transmitter in the same neuron i f the receptor is in an 

active status at the time of receiving. Similarly, a 

transmitter can transmit a signal to a receptor in other 

neuron, if the transmitter is in an active status at the 

time of signal transmitting. If the selected receptor or 

transmitter is in an inactive status at the time of 

receiving and transmitting respectively then the signal is 

dropped. Further, receptors in a neuron are grouped and 

number of receptor-groups within a neuron is equal to  

the number of neurons in the network -1. Number of 

receptors in a group may be di fferent within a neuron 

and among neurons. Therefore, number of receptors and 

active number of receptors of a given connection are 

critical parameters that determine the strength of the 

connection between two neurons at a given time.   

These active and inactive statuses of constituent 

components are determined by an integrated process,  

which can be decomposed into two processes, synaptic 

computation and homeostatic plasticity. Our proposed 

network consists of 4 neurons because it has been 

proven that network with 4 neurons is capable enough 

to simulate learning effectively, Izquierdo-Torres and 

Harvey [9]. The network structure according to our 

approach is shown in fig 2. Receptors are grouped into 

three groups to establish the connection with other three 

neurons. For an example, if an active transmitter in 

neuron A wants to transmit a signal to a receptor in  

neuron B, then it selects a receptor from A-receptor 

group in neuron B. 

 

 

 

 

 

 

 

 

 

 
Fig. 1. A typical structure of a model neuron. 

1. Signal Propagation within the Network 
 

When a brief train of stimuli is applied to a pre-

synaptic neuron, during the train, amplitude of the 

resulting pre-synaptic potential may either increase 

(called synaptic facilitation) or decease (synaptic 
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depression). According to biologist, the amount of 

neurotransmitter release from pre-synaptic terminals is  

subject to these two rel atively short-term modi fications.  

At the facilitation, the amount of neurotransmitter 

release is very high and it decays along the time. This 

phenomenon can be easily explained using internal ca+2 

ion concentration. Arrival of train of stimuli increases  

the amplitude of pres-synaptic potential which opens up 

ca+2 ion gates. The growth of internal ca+2 ions 

concentration increases the amount of neurotransmitter 

release, however, as time goes, the appearance o f  

antagonized ions into pre-synaptic terminal such as 

magnesium, cadmium,  nickel, etc reduces the internal 

ca+2 ions concentration. This decreases the amount of 

neurotransmitter release. Similarly, continuous stimulus 

may also reduce pre-synaptic potential which makes the 

amount of neurotransmitter release is minimal at the 

depression. 

Fig.2. Structure of the network with four model neurons. 
 

These two phenomena have been considered in the 

model proposed by Maass and Zador [10]. They have 

modeled the behavior of a synapse as a stochastic 

process with two finite statuses, i.e. R and F. This model 

is used in our approach to control signals propagation 

within the network. We map these two statuses, into 

active status and inactive status of our constituent 

components respectively. In their model, for each spike 

in spike train t, the output of a synapse consists of the 

sequence S(t) of those ti ϵ t on which neurotransmitters 

are released by S. Thus, tÎS(t) becomes a stochastic 

process, computed by synapse S, with output sequence 

q = q1, q2, q3, ...., qn ϵ {R,F}.  Ps(ti) defines, see “ (2)”, 

the probability that ith spike in the pre-synaptic spike 

train t = (t1, t2, .. ,tk) triggers the release of a signal at  

time t of the synapse S. If Ps(ti) > 0 then spike excites 

synapse and releases the neurotransmitters, so the 

output is R, otherwise the output is F. Non-negative 

functions C(t) and V(t), defined in “ (3)” and “ (5)” 

model facilitation and depression. Function C(s) in 

“ (4)”, models the response of C(t) to a pre-synaptic 

spike that had reached to the synapse S at t-s. Moreover 

function V(s) in “ (6)” models the response of V (t) to a 

proceeding release of the synapse S at time t-s ≤ t.  

Whilst non-negative parameters α, τc and τv model the 

magnitude of the signal and decay constants of 

facilitation and depression respectively. C0 and V0 

model the parameters for facilitation and depression at  

the equilibrium. So that, C0 is the internal ca+2 ions 

concentration at the equilibrium and V0 is the maximum 

amount of neurotransmitters can be rel eased by a 

synapse.  

 

))t(V*)t(Cexp(1)t(P iiis --=                 (2) 

)tt(CC)t(C
tt i0

i
å <

-+=                    (3)   

)τ/sexp(.α)s(C c-=                         (4) 

))tt(VV,0max()t(V
)t(Standtt

i0

ii

å
Î<

--=            (5)     

)τ/sexp()s(V v-=                          (6)                                   

  This stochastic process has been developed and 

tested only for a one synapse, but in our research it is 

applied into thousands of individual synapses. Therefore,  

we modified the model by introducing a θ as a threshold 

value, if Ps(ti) > θ then spike excites synapse, so the 

output becomes R otherwise it is F. This threshold value 

is determined in the training phase under homoeostatic 

plasticity process. 

2. Homeostatic Plasticity    
 

   Each model neuron has got four threshold values. 

One threshold value is for transmitters and other three 

threshold values are for three receptor-groups. These 

threshold values are determined to ensure the stability 

of the network within a particular range. So that, when 

firing rat e of a neuron increases, it also increases the 

threshold values of the rel evant groups to derive the 

network towards stability. Similarly, when the firing rate 

of a neuron is very low, it decreases threshold values o f 

the relevant groups, in order to increase the firing 

frequency of the neuron. Let RIJ is J-receptor-group of 

I-neuron. For an example, RAC is the C-receptor-group 

of the A-neuron. XAC is the output of the RAC 

receptor-group. TI is the transmitter group of I-neuron 
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and OI is the output of the transmitter group of I-neuron.  

For an example, TA is the transmitters in neuron A and 

OA is the output of the transmitter group of neuron A,  

see fig. 3. 

  

  

 

 
 

 

 

 

 

 

 
Fig..3. Signal transmission among neurons. 

 

   qI is the threshold value for the transmitters in 

neuron I. qIJ   is the threshold value for the J-receptor-

group of the I-neuron. We define qI as in “ (7)”. Instance 

of “ (7)” is shown in “ (8)”.  The output of IJ-receptor-

group, XIJ, can be expressed in terms of active receptors  

in the IJ-group as define in “ (9)”. Similarly, OI can be 

defined in terms of active transmitters in I-neuron as  

shown in “ (10)”. f(.) is the threshold calculation 

function, defined in “ (11)”.  
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Similarly, we calculate threshold values for each 

receptor-group, qIJ, in terms of active number of 

constituent components in relevant neurons, as defined 

in “ (12)”. Calculated threshold values are then use as 

constant values in the testing phase.  
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III. DISCUSSIO N 

   In our study instead of defining weight component  

to represent synaptic efficacy we define small  

programmable computational units which change their 

statuses, active and inactive, according to the amount of 

signal processing. These programmable units are 

attached to the neurons which are defined as agents and 

their communication enable through the message 

passing which in turn represents the internal and 

external signals to the network. Thus number of active 

computational units defines the strength of the 

connectivity between presynaptic and postsynaptic 

neurons at a given time. The active and inactive statuses  

of these small programmable units are subjected to the 

Homeostatic plasticity process and Zador and Mass  

approach. The most significant feature of our method is 

no initialization of weight components but the 

introduction of threshold increment process to the 

training phase. Bipolar status of constituent components  

at the site of neurotransmitter rel ease, i.e. R or F, and 

integration of Homeostatic plasticity as a stability 

supportive mechanism and the complete elimination of 

weight components are other signi ficant features that  

distinguish our method from others while making us  

much closer to the biological findings than existing 

learning environments in Artifi cial Neural Network.   
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