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Abstract
The recent years have witnessed a surge of inter-

ests in graph based semi-supervised learning. How-
ever, two of the major problems in graph based semi-
supervised learning are: (1) how to set the hyperpa-
rameter in the Gaussian similarity; (2) how to make
the algorithm scalable. In this talk, we will intro-
duce a general framework for graph based learning.
First, we proposed a method called linear neighbor-
hood propagation which can automatically construct
the optimal graph, second, we introduce a novel mul-
tilevel scheme to make our algorithm scalable for large
data sets. The applications of our algorithm on vari-
ous real world problems are also demonstrated.

1 Introduction

Semi-Supervised Learning, which aims at learning
from labeled and unlabeled data, has aroused consid-
erable interests in data mining and machine learning
fields since it is usually hard to collect enough labeled
data points in practical applications. Various semi-
supervised learning methods have been proposed in
recent years and they have been applied to a wide
range of areas including text categorization, computer
vision, and bioinformatics (see [6][22] for recent re-
views). Moreover, it has been shown recently that the
significance of semi-supervised learning is not limited
to utilitarian considerations: humans perform semi-
supervised learning too [8][12][21]. Therefore, to under-
stand and improve semi-supervised learning will not
only help us to get a better solver for real world prob-
lems, but also help us to to better understand how
natural learning come about.

One key point for understanding the semi-
supervised learning approaches is the cluster assump-
tion [6], which states that [19] (1) nearby points are
likely to have the same label (local consistency); (2)
points on the same structure (such as a cluster or a
submanifold) are likely to have the same label (global

consistency). It is straightforward to associate cluster
assumption with the manifold analysis methods de-
veloped in recent years [2][9] (note that these methods
are also in accordance with the ways that the humans
perceive the world [10]). The manifold based methods
first assume that the data points (nearly) reside on
a low-dimensional manifold (which is called manifold
assumption in [6]), and then try to discover such mani-
fold by preserving some local structure of the dataset.
It is well known that graphs can be viewed as dis-
cretizations of manifolds [1], consequently, numerous
graph based SSL methods have been proposed in re-
cent years, and graph based SSL has been becoming
one of the most active research area in semi-supervised
learning community [6].

However, in spite of the intensive study of graph
based SSL methods, there are still some open issues
which have not been addressed properly, such as:

1. How to select an appropriate similarity measure
between pairwise data automatically;

2. How to speed up these algorithms for handling
large-scale dataset (since they usually require the
computation of matrix inverse).

To address the first issue, in this talk we will first
present a novel method called Linear Neighborhood
Propagation (LNP) [15]. The LNP algorithm approxi-
mates the whole graph by a series of overlapped linear
neighborhood patches, and the edge weights in each
patch can be solved by a standard quadratic program-
ming procedure. After that all the edge weights will be
aggregated together to form the weight matrix of the
whole graph. We prove theoretically that the Lapla-
cian matrix of this “pasted” graph can approximate
the Laplacian matrix of a standard weighted undi-
rected graph. Therefore, this approximated Laplacian
matrix can be used as a smooth matrix as in standard
graph-based semi-supervised learning algorithms.

Second, we present a fast multilevel graph learn-
ing algorithm. In our method, the data graph is first
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coarsened level by level based on the similarity be-
tween pairwise data points (which has a similar spirit
with grouping, such that for each group, we only select
one representative node), then the learning procedure
can be performed on a graph with a much small size.
Finally the solution on the coarsened graph will be re-
fined back level by level to get the solution of the initial
problem. Moreover, as unsupervised learning can be
viewed as a special case of semi-supervised learning,
we will show that our multilevel method can easily
be incorporated into the graph based clustering meth-
ods. Our experimental results show that this strategy
can improve the speed of graph based semi-supervised
learning algorithms significantly. And we also give a
theoretical guarantee on the performance of our algo-
rithm.

2 Linear Neighborhood Propagation

In this section we will present the de-
tailed algorithm of linear neighborhood prop-
agation. First let’s introduce some notations.
X = {x1,x2, · · · ,xl,xl+1, · · · ,xn} represents a set of
n data objects in Rd, and L = {1,−1} is the label set
(we consider the two-class case for the moment). The
first l points XL = {xi}l

i=1 are labeled as ti ∈ L and
the remaining points XU = {xu}n

u=l+1 are unlabeled.
we propose to use the neighborhood information of

each point to construct G. For computational conve-
nience, we assume that all these neighborhoods are
linear, i.e. each data point can be optimally recon-
structed using a linear combination of its neighbors
[9]. Hence our objective is to minimize

ε =
∑

i

∥∥∥∥xi −
∑

ij :xij
∈N (xi)

wiij
xij

∥∥∥∥
2

(1)

where N (xi) represents the neighborhood of xi, xij is
the j-th neighbor of xi, and wiij is the contribution
of xij

to xi. We further constrain
∑

ij∈N (xi)
wiij

= 1,
wij > 0. Obviously, the more similar xij

to xi, the
larger wiij

will be (as an extreme case, when xi =
xik

∈ N (xi), then wiik
= 1, wiij = 0, ij 6= ik, xij ∈

N (xi) is the optimal solution). Thus wiij can be used
to measure how similar xij

to xi. One issue should be
addressed here is that usually wiij

6= wiji. It can be
easily inferred that

εi =
∑

ij ,ik:xij
,xik

∈N (xi)
wiij

Gi
ijik

wiik
(2)

where Gi
ijik

represents the (j, k)-th entry of the local
Gram matrix Gi where K = |N (xi)| is the size of

xi’s neighborhood. Thus the reconstruction weights
of each data object can be resolved by the following n
standard quadratic programming problems

minwiij

∑
ij ,ik:xij

,xik
∈N (xi)

wiij
Gi

ijik
wiik

s.t.
∑

ij

wiij = 1, wiij > 0. (3)

After all the reconstruction weights are computed, we
will construct a sparse matrix W by W (i, j) = wij .
Intuitively, this W can be treated as the weight matrix
of G. And the way we construct the whole graph is to
first shear the whole graph into a series of overlapped
linear patches, and then pasted them together.

After the graph has been constructed, we have to
make use of it to predict the labels of the unlabeled
vertices. Here we label propagation scheme, which can
iteratively propagate the labels of the labeled data to
the remaining unlabeled data XU on the constructed
graph.

Let F denote the set of classifying functions defined
on X , ∀ f ∈ F can assign a real value fi to every
point xi. The label of the unlabeled data point xu

is determined by the sign of fu = f(xu) (let’s only
consider the two-class case for the time being).

In each propagation step, we let each data object
absorbs a fraction of label information from its neigh-
borhood, and retains some label information of its ini-
tial state. Therefore the label of xi at time m + 1
becomes

fm+1
i = α

∑
j:xj∈N (xi)

wijf
m
j + (1− α)ti (4)

where 0 < α < 1 is the fraction of label informa-
tion that xi receives from its neighbors. Let t =
(t1, t2, · · · tn)T with ti ∈ L (i 6 l) , uu = 0 (l + 1 6
u 6 n). fm = (fm

1 , fm
2 , · · · , fm

n )T is the prediction
label vector at iteration t and f0 = t. Then we can
rewrite our iteration equation as

fm+1 = αWfm + (1− α)t (5)

We will use Eq.(5) to update the labels of each data
object until convergence, here “convergence” means
the predicted labels of the data will not change in sev-
eral successive iterations.

3 A Multilevel Scheme

Below we will introduce a novel multilevel scheme
[17] for semi-supervised learning on graphs. The
scheme is composed of three phases: (1) graph coars-
ening; (2) initial classification; (3) solution refining.
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3.1 Graph Coarsening

In the following we will describe the first coarsen-
ing step. Starting from graph G0 = G (the super-
script represents the level of graph scale), we first
split V0 = V into two sets, C0 and F0, subject to
C0 ∪ F0 = V0, C0 ∩ F0 = Φ. The set C0 will be used
as the node set of the coarser graph of the next level,
i.e. V1 = C0. And the nodes in C0 are called C-nodes,
which is defined as:

Definition 1. (C-nodes and F-nodes) Given a
graph Gl = (V l, E l), we split V l into two sets, Cl and
F l satisfying Cl ∪ F l = V l, Cl ∩ F l = Φ, Cl = V l+1.
And each node in Cl must satisfy one of the following
conditions:
(1) it is labeled;
(2) it strongly influences at least one node in F l on
level l.
We will call the nodes in Cl C-nodes, and the nodes in
F l F-nodes.

Here strongly influence means

Definition 2. (Strongly Influence) A node xi

strongly influences xj on level l means that

wl
ij > δ

∑
k
wl

kj (6)

where 0 < δ < 1 is a control parameter, and wl
ij is the

weight of the edge linking xi and xj on Gl.

In fact, zl
ij = wl

ij/
∑

k wl
kj measures how much xj de-

pends on xi. Since xj only connects to its neighbor-
hood, a larger zij implies a larger dependency of xj to
xi. Intuitively, if xj depends too much on xi, then we
only need to retain xi. The normalization is to make
zij a relative measure which is independent of the data
distributions.

Let f0 = f be an classification vector we want to
solve, and f1 be its corresponding classification vec-
tor on G1 (hence the dimensionality of f1 should be
equivalent to n1, the cardinality of V1). The same as
in other multilevel methods [13], we assume that f0

can be approximately interpolated from f1, that is1

f0 ≈ P[0,1]f1, (7)

where P[0,1] is the interpolation matrix of size n0×n1

(n0 = n), subject to
∑

j P[0,1]
ij = 1. Moreover, we have

1Actually, as we have analyzed after definition 3, the nodes
in V0/V1 are largely dependent on the nodes in V1. Therefore
what we define in Eq.(7) is just to model such a dependence
rule. The interpolation rule is simple and efficient, and it has
also been widely used in the multilevel or multigrid methods for
solving Partial Differential Equations[5][13], that’s the reason
why we apply it here.

the following theorem:

Theorem 1. The edge weights on graph Gl+1 can be
computed from the edge weights on Gl by

wl+1
uv =

1
2

∑
i,j

wl
ij(P

[l,l+1]
jv −P

[l,l+1]
iv )(P [l,l+1]

iu −P
[l,l+1]
ju ).

(8)
An issue should be addressed here is that for compu-
tational efficiency, the above coarsening weight equa-
tion can be somewhat simplified to the following Iter-
ated Weighted Aggregation strategy [13], which com-
pute wl+1

uv by

wl+1
uv =

1
2

∑
i,j

P
[l,l+1]
iu wl

ijP
[l,l+1]
jv (9)

It can be shown that Eq.(9) can provide a good ap-
proximation to Eq.(8) in many cases [11].

3.1.1 Initial Classification

Assuming the data graph G has been coarsened recur-
sively to some level s, then the semi-supervised classi-
fication problem defined on Gs is to minimize

J (fs) = fsT P[s,s−1] · · ·P[1,0]SP[0,1] · · ·P[s−1,s]fs

+γ‖P[0,1] · · ·P[s−1,s]fs − y‖2,

where P[i,i−1] =
(
P[i−1,i]

)T
, and S is the smoothness

matrix. Therefore, let ∂J (fs)
∂fs = 0, then

∂J (fs)
∂fs

= (Ls) fs − γP[s,s−1] · · ·P[1,0]y = 0

=⇒ fs = γ (Ls)−1 P[s,s−1] · · ·P[1,0]y.

Here I is the n×n identity matrix. Moreover, we have
the following theorem

Theorem 2. The matrix Ls = P[s,s−1] · · ·P[1,0](S +
γI)P[0,1] · · ·P[s−1,s] is invertible.

Based on the above theorem, we can compute the ini-
tial classification vector using Eq.(10), in which we
only need to compute the inverse of an ns × ns ma-
trix, and usually ns is much smaller than n.

3.1.2 Solution Refining

Having achieved the initial classification vector from
Eq.(10), we have to refine it level by level to get a
classification vector on the initial graph G0 = G. As
stated in section 3.1, we assume that the classification
vector on graph Gl can be linearly interpolated from
Gl+1, i.e. f l = P[l,l+1]f l+1. Here P[l,l+1] is an nl×nl+1

interpolation matrix subject to
∑

j P[l,l+1]
ij = 1.
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Based on the simple geometric intuition that the
label of a point should be similar to the label of its
neighbors (which is also consistent with the cluster
assumption we introduced in section ??), we propose
to compute P

[l,l+1]
iI(j) by

P
[l,l+1]
iI(j) =





wl
ij/

∑
k∈Cl wl

ik i /∈ Cl

1 i = j
0 xi ∈ Cl, i 6= j

(10)

In the above equation, subscripts i, j, k are used to
denote the index of the nodes in V l. We assume that
node j has been selected as a C-node, and I(j) is the
index of j in V l+1. It can be easily inferred that P[l,l+1]

has full rank.

4 Summary

We present a general framework for graph based
semi-supervised learning. The framework first use lin-
ear neighborhood propagation to automatically con-
struct the optimal graph, then we apply a multilevel
scheme to make the whole algorithm more efficient.
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