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Abstract

The use of non-dominance in multi-objective search
has traditionally focused on generating the set of non-
dominated solutions and choosing an element of this set
to implement. In this paper, I will show the richness of
the non-dominated set when the objectives (in the multi-
objective search problem) represent complexity measures.
I will present the concept of Pareto Operating Curves,
whereby a system operates along these operating curves
based on the risk, complexity and required trade-off it en-
counters in the environment. Key fundamental features
these systems possess are robustness and the ability to
adapt in different environments.

1 introduction

The concept of non-dominance has been associated in the
evolutionary multi-objective computation (EMO) literature
with multi-objective optimization problems (MOP). The
topology of the set of non-dominated solutions in the ob-
jective space shapes up a curve that is known as the Pareto
curve. An optimization problem is traditionally seen in
terms of objectives - representing the performance mea-
sures of the system - and a set of constraints.
In this paper, we wish to expand the use of the Pareto curve
from being a set of trade-off “independent” solutions to an
operating curve, where the environment will dictate which
solution from this set will be used. Risk is traditionally de-
fined as the impact of uncertainty on objectives. The uncer-
tainty that this paper is concerned with, is the uncertainty
in the operating environment. In this case, the objective
functions need to reflect the performance of a solution in an
operating environment. We will call this operating curve as
the Pareto Operating Curve (POC). This paper is the first to
discuss the concept of POC.
In the rest of this paper, we will introduce some basic def-
initions in MOP, followed by discussions of some of my
work where the POC was used - although not necessarily
discussed explicitly.

2 Multi-objective optimization

Consider amulti-objective optimization problem(MOP) as
presented below:-

Optimize F (~x ∈ Υ) (1)

Subject to: Υ = {~x ∈ Rn|G(~x) ≤ 0} (2)

Where~x is a vector of decision variables (x1, . . . , xn) and
F (~x ∈ Υ) is a vector of objective functions (f1(~x ∈
Υ), . . . , fK(~x ∈ Υ)). Heref1(~x ∈ Υ), . . . , fK(~x ∈ Υ),
are functions onRn andΥ is a nonempty set inRn. The
vectorG(~x) represents a set of constraints.
The aim is to find the vector~x∗ ∈ Υ which optimizes
F (~x ∈ Υ). Without any loss of generality, we assume that
all objectives are to be minimized. We note that any max-
imization problem can be transformed to a minimization
one by multiplying the former by -1.
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Figure 1: The concept of dominance in multi-objective op-
timization. Assuming that bothf1 andf2 are to be mini-
mized,D is dominated byB sinceB is better thanD when
measured on all objectives. However,A,B andC are non–
dominated since none of them is better than the other two
when measured on all objectives.

The principle of dominance (Figure 1) inmulti-objective
optimization problem(MOP) allows a partial order relation
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that works as follows: a solution does not have an advan-
tage to be included in the set of optimal solutions unless
there is no solution that is better than the former when mea-
sured on all objectives. A non–dominated solution is called
Pareto. A MOP can be solved in different ways. Evolution-
ary algorithms (EAs) [8, 10], being population based, they
are able to generate a set of near-Pareto solutions in a sin-
gle run. In addition, they do not require assumptions of
convexity, differentiability, and/or continuity as traditional
optimization problems do. EAs with local search are usu-
ally used to improve the performance of EAs to get closer
to the actual optimal or, the Pareto set in the case of MOPs.

3 The Pareto Operating Curve

In many situations, the Pareto curve can be seen as the sin-
gle solution to the problem. Take for example a problem
where there is a need to evolve controllers for a robot. The
objective functions can potentially be to minimize energy
consumption and minimize the robot’s performance error.
In this case, a solution on the Pareto curve for this problem
is just one possible trade-off that can be made between the
previous two objectives. However, this robot is likely to
encounter a number of situations where it needs to trade-
off differently between these two objectives over time. As
such, the Pareto Curve can be seen as an Operating Curve,
as the level of trade-off needed changes over time, a solu-
tion moves from one location to another on that curve (See
Figure 2).

Definition 3.1 Pareto Operating Curve A Pareto Oper-
ating Curve (POC) is a Pareto Curve for a problem where
the trade-off between the objectives to be optimized varies
over time; thus a solution selected along this curve at one
point of time needs to move to a different solution at an-
other point of time to minimize the impact of uncertainty
on objectives (i.e. risk).

We need to differentiate between adaptive feedback con-
trol with the concept of Pareto Operating Curve. In tra-
ditional adaptive feedback control, a controller adjusts its
parameters in response to changes in the environment. The
Pareto Operating Curve provides the most efficient set of
models to be operated in different environments to min-
imize the risk. Each member in this set is optimal in a
particular environment in the sense that each environment
represents a specific level of trade-off and there is a solu-
tion in the efficient set which is optimal on that required
level of trade-off. One can then imagine the existence of
a switch or a decision maker that senses the environment,
determines the optimal level of trade-off needed, then se-
lects the corresponding non-dominated solution from the
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The Pareto Operating Curve 

Figure 2: The Pareto Operating Curve. SolutionB can be
the best solution for a specific level of trade-off between
objective functionf1 andf2 at timet. When the required
level of trade-off changes, this solution may need to move
along the curve to become, for example, solutionA or C.

efficient set. Each time a solution is selected from the non-
dominated set, it defines a movement on the Pareto curve.
This movement may be constrained in terms of its cost or
characteristics, thus bounds the impact of the risk mitiga-
tion strategy. We now provide examples where this concept
is successfully demonstrated.

4 The Pareto Operating Curve and Evolu-
tion

The majority of research in decision making and engineer-
ing has focused on selecting a single solution. Recent re-
search showed the benefits in viewing problems in the eyes
of multi-objective search. For example, in single objective
optimization, one can simply benefit from transforming it
into multi-objective as being demonstrated in [6].
To discuss the concept of POC in an artificial life context,
it would be less attractive to do so without discussing its
biological roots and impact. Although this is the first time
this concept is introduced in this paper, we can trace some
seeds for this concept in the literature. Darwin wrote:

It seems clear that organic beings must be ex-
posed during several generations to new con-
ditions to cause any great amount of variation;
and that, when the organisation has once begun
to vary, it generally continues varying for many
generations” (from [9] P25).

What is interesting about Darwin’s quote is the emphasis
he placed on variations. According to Darwin, any orga-
nization is in a constant state of flux. But we know from
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common sense and decision sciences that each state of flux
is likely to require different levels of trade-offs. The Pareto
curve represents the optimal set of solutions in the sense
that for any level of trade-off required, there is a solution in
that set that is the optimal solution for the single objective
optimization problem derived from the utilities associated
with the required level of trade-off. Therefore, evolution
does not necessarily need to be an optimizer, but for evolu-
tion to work, it needs to maintain diversity along the Pareto
curve. In so doing, evolution can move from one trade-off
to another. Evolution is not an optimizer from traditional
optimization point of view, while from multi-objective op-
timization point of view, I will make the assertion that evo-
lution is a multi-objective optimizer. In fact, I would claim
that this is the evolutionary strategy for risk mitigation.
The objectives that evolution optimizes include for exam-
ple adaptive capacity, robustness, and survivability. In a
number of situations, such as in viruses where the level of
unpredictability in the change in the environment is high,
we should accept that random selection can be an efficient
strategy for risk minimization in such environment. Once
the signal to noise ratio is high, random selection fails as a
strategy and other types of selection mechanisms become
more appropriate.
Not so long after Darwin’s writing, Pareto wrote:

If, as has generally been the case, it is held that,
for a people, utility is coterminous with its mate-
rial prosperity and its moral and intellectual de-
velopment, then we have a criterion for making
comparisons between different people. But there
still remains a difficulty, deriving from the fact
that society has to be considered as a complex
whole, as a system, as an organism. [12].

Well said before its time, Pareto pointed us to the right
direction, that an organism is a system of systems (SoS),
evolution is, the mind is, and society is. As such, each
sub-system (which is a system in its own right) has its own
utilities which can be in conflict. For example, material
prosperity can be in conflict with intellectual development.
These competing objectives on the sub-system level, along
with the different levels of trade-off possessed by each sub-
system (representing their own individual biases) generate
the diversity required for the system as a whole to operate
and function.

5 The Pareto Operating Curve and Com-
plexity

In [14, 15], we have shown for the first time the relationship
between Pareto and Complexity. The essence of this work

is that complexity of species is not a single measure. More-
over, combining many measures of complexity using some
index into a single measure, not only hides information be-
cause of the strict order bias generated by a weighted sum
approach, it also violates the essence of what complexity
is. Thus, complexity should be defined as a strict partial
order rather than a linear strict order. In these papers, we
introduced the following definition of complexity:

• Complexity is a strict partial order relation.

This definition moves away from what the majority of lit-
erature in Engineering attempts to do; that is, to come up
with a quantitative measure (single number) of complex-
ity to establish a linear rank. This single number hides
information of its constituent parts and the level of trade-
offs required on the sub-system level. It also assumes that
one must unify dimensionality and scale before combining
the different complexity measures. Pareto’s view to com-
plexity, however, accepts the existence of many different
quantitative measures of complexity but it rejects the idea
of combining them as a single measure. Pareto optimal-
ity does not satisfy reflexivity; that is, a solution cannot
dominate itself. It also acts as a filter of these measures
since a measure is redundant if it is not in conflict (i.e. it
produces identical order) with an existing measure. Pareto
optimality, thus, imposes a complexity hierarchy on the set
of objects/solutions.

6 The Pareto Operating Curve and Robotics

The use of Pareto-based Evolutionary Multi-objective
(EMO) Search techniques in computational intelligence -
particularly fuzzy inferencing and neural networks, is a rel-
atively new literature. The work on Pareto-based EMO for
fuzzy inferencing was pioneered in a number of papers,
particularly [11], while the work on Pareto-based EMO for
neural networks was pioneered in [1, 2, 5]. Work on neuro-
ensemble was then introduced in a number of papers in-
cluding [3, 4].
Traditionally, one would search for a learning machine -
such as a neural network - that performs well on the average
on all environmental conditions it may encounter. How-
ever, there are many applications where this average per-
formance is not acceptable. For example, imagine a walk-
gate performed by a neural network. Imagine that we want
the robot to walk in different environments. Here, we can
use the concept of Pareto optimality to optimize along dif-
ferent environmental conditions. The objective functions
represent the robot performance in different environmental
conditions. For example, one objective can represent the
robot’s speed while the second represents the friction in the
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terrain. The set of non-dominated solutions for this prob-
lem represents a trade-off between performance (speed)
and complexity (nature of the terrain). Every solution in
this set represents the optimal solution on the correspond-
ing terrain’s friction. As such, the whole set can be used
within a robot with a switch attached to a sensor that senses
the friction between the robot’s leg and the terrain. One can
then imagine that at any particular point of time, the robot
is operating in one area of the Pareto curve and as the en-
vironmental conditions change, it moves to other areas.
The previous concept was used in [13], where the two ob-
jectives were distance travelled and the size of the con-
troller. The resultant robots trade-off, the size of the con-
troller and the Pareto curve clearly demonstrated a smooth
transition from no-walking behavior to a robot that jumps.
Another application of this concept was in the area of Air
Traffic Management [7]. Different algorithms for conflict
detection work better in specific environments. Once more,
one can imagine the Pareto Operating Curve as the set of
environmental conditions where an algorithm would fail.
By combining these conditions using a switch/gate, one
would minimize the overall failure of the aircraft detection
mechanism and the risk associated with that by combining
different detection algorithms.

7 Conclusion

In this paper, I introduced the concept of Pareto Operating
Curve, whereby the decision making process is seen as a set
of movements along the curve to minimize risk. The roots
of this concept were traced in evolution, and its relationship
with complexity and robotics were discussed. As a new
concept, the doors are open to adopt it to many applications
including data mining, robotics or decision theory.
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