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Abstract
Adaptation is a fundamental property of human per-
ception. Recently, it was found that there are two
opposite types of adaptation to repetitive stimuli with
temporal difference. In this paper, we construct an
integrative model of adaptation. We model the per-
ception as a Bayesian inference and also model the
two types of adaptation as changes in the likelihood
function and the prior distribution in the Bayesian in-
ference. We examine our model analytically and show
how the type of adaptation depends on model param-
eters.

Keywords: Bayesian inference, lag adaptation,
Bayesian calibration, ventriloquism aftereffect

1 Introduction

Our surrounding world is constantly changing. Our
perception has to deal with such changes in statistics
of our surroundings, by adjusting the inner representa-
tions of those statistics. In addition to those changes
in the outer world, there are also changes in our body.
For example, when we injure our eyes or ears, our per-
ception would be impaired, due to the change in the
inner representation of the physically delivered stim-
ulus in the brain. Such adaptation phenomena are
the important aspects of human perception and they
themselves are worth to be investigated. In addition
to that, by investigating the properties of the adap-
tation of a particular type of perception or a motor
system, its neural mechanism can often be deduced by
psychophysical experiments and brain imaging exper-
iments (e.g. [1]).

We showed in earlier works that the ventriloquism
aftereffect, which is an adaptation phenomenon in au-
diovisual spatial perception, can be explained by up-
dating the parameter that determines the mean value

of the likelihood function that represents a noise dis-
tribution [2].

In the ventriloquism aftereffect, the repeated stim-
uli are perceived to be presented at the same place.
This type of adaptation is also observed in the adap-
tation to audiovisual temporal difference, that is, the
participants perceive the temporal difference in the
adapting stimuli to be simultaneous [3]. This type of
adaptation is call the “lag adaptation”. However, re-
cently, an opposite type of adaptation was found [4] in
tactile temporal adaptation. They showed that adap-
tational effect was opposite to the lag adaptation, that
is, the participants were more unlikely to perceive si-
multaneity for the repeatedly presented stimuli. They
showed that the result could be explained by assum-
ing that the participants had learned the prior distri-
bution of stimulus timing. They called the adaptation
“Bayesian calibration”.

In our earlier work [2], adaptation was modeled
as the update of the mean values of likelihood func-
tions. Therefore, lag adaptation can be considered to
be changes in the likelihood functions. On the other
hand, as Miyazaki et al. showed in [4], Bayesian cal-
ibration can be considered to be changes in the prior
distributions.

In this paper, we extend our earlier model [2] and
investigate the interaction of these two types of adap-
tation and show what parameters determine the type
of adaptation.

2 Integrative Bayesian model of
adaptation

We consider an audiovisual localization task. We con-
sider a task in which a pair of sound and light with
spatial disparity is presented, and the participant de-
termines which stimulus is presented at the right. If
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we plot the percentage of “sound right” response for
various test stimulus disparities, we obtain a psycho-
metric function. The center point of the psychomet-
ric function represents the disparity that the partici-
pants judged to be at the same location. During an
adaptation period, stimuli with, in most experiments,
constant disparity are repeated. The adapting stimuli
during the adaptation period are not necessarily con-
stant: they may be drawn from a probability distri-
bution. Then we measure the psychometric function
again. The type of adaptation is represented as the
difference in the center point of the psychometric func-
tion between before and after adaptation period. If the
center point is shifted toward the adapting stimuli, it
is “lag adaptation” type, and if it is shifted opposite
from the adapting stimuli, it is “Bayesian calibration”
type.

We formalize the optimal observer that uses
Bayesian inference to estimate the true positions of
stimuli. We assume that the observer can only observe
noisy position of sound and light, denoted as yA and
yV , respectively, that are deviated from the true po-
sitions of stimuli, denoted as xA and xV , respectively.
The observer is assumed to determine estimators x̂A

and x̂V from yA and yV by maximizing the posterior
probability distribution P (xA, xV |yA, yV ). We assume
independence between the auditory and visual noise.
Then, from Bayes’ theorem, it follows that

P (xV , xA|yV , yA) ∝ P (yA|xA)P (yV |xV )P (xA, xV ),
(1)

We model the adaptation by changing the mean
values of the likelihood function [2], P (yA|xA) and
P (yV |xV ), and the prior distribution P (xA, xV ). We
assume that the noise are Gaussian noise and the prior
probability of xA and xV depends only on their differ-
ence xA − xV . Thus, we assume

P (yV |xV ) =
1√

2πσV

exp
(

− (yV − xV − µV )2

2σ2
V

)

, (2)

P (yA|xA) =
1√

2πσA

exp
(

− (yA − xA − µA)2

2σ2
A

)

, (3)

P (xA, xV ) =
1√

2πσpL
exp

(

− (xA − xV − µp)2

2σ2
p

)

, (4)

where µA, µV , and µp modifies represent the mean
values of distributions.

We interpret the adaptational effect observed in
psychophysical experiments as the false update of µA

and µV due to the unnatural stimuli that the partic-
ipants are exposed to, and the learning of µp of such
unnatural stimuli. We assume that the real values of
µA and µV are zero and unchanged from their initial
values, and that the observer knows the other param-

eters like σA, σV , and σp. Quantities σp and µp can
be controlled by the experimenter.

Each time the observer receives the adapting au-
diovisual stimuli, it estimates the corresponding pa-
rameters and updates its estimations on µV , µA, and
µp based on observations and estimations. We denote
these observer’s estimations of µV , µA, and µp as µ̂V ,
µ̂A, and µ̂p. The observer determines MAP estimators
x̂V and x̂A from yV and yA, and updates µ̂V , µ̂A, and
µ̂p as

µ̂A(t + 1) = (1 − αA)µ̂A(t) + αA(yA − x̂A), (5)
µ̂V (t + 1) = (1 − αV )µ̂V (t) + αV (yV − x̂V ), (6)
µ̂p(t + 1) = (1 − αp)µ̂p(t) + αp(x̂A − x̂V ), (7)

where µ̂A(t), µ̂V (t), and µ̂p(t) represent the observer’s
estimations at time t. Quantities αA, αV , and αp de-
termine the relative adaptation effect in each step, and
are assumed to satisfy 0 ≤ αi ≤ 1, where i represents
each one of {A, V, p}. We assume that the initial val-
ues of µ̂A and µ̂V are their true values, that is, zero.
We also assume that the initial value of µ̂p is zero.

3 Psychometric function

Here, we derive the dependency of the center point of
a psychometric function on model parameters.

In our model, the observer’s task corresponds to
judging the sign of x̂A − x̂V : if it is positive, sound
is on the right. Therefore, the probability that the
observer’s response is “sound right” given a presented
disparity ∆x ≡ xA −xV is equivalent to P (x̂A − x̂V >
0|xA−xV = ∆x). As we will show later, this probabil-
ity distribution does not depend on the absolute val-
ues of xA or xV but only on their difference ∆x. Thus
in our model, the psychometric function, denoted as
Psycho(∆x), can be written as

Psycho(∆x) = P (x̂A − x̂V > 0|xA − xV = ∆x). (8)

In usual experiments, it is known that psychometric
function can be approximated by a cumulative Gaus-
sian distribution (e.g. [4]). Therefore, it can be writ-
ten as

Psycho(∆x) =
∫ ∆x

−∞
d∆′

xN(∆′
x;µpsycho, σ

2
psycho),

(9)
where N(x;µ, σ2) represents a normal probability dis-
tribution of x with mean µ and variance σ2. Thus,
by calculating P (x̂A − x̂V > 0|xA − xV = ∆x) and
comparing equations (8) and (9), we can determine
how the center point of the psychometric function, i.e.
µpsycho, depends on the model parameters.
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By substituting equations (2), (3), and (4) into
equation (1) and maximizing it, we obtain

x̂A =
1

σ2
all

¡

(σ2
V + σ2

p)(yA − µ̂A) + σ2
A(yV − µ̂V ) + σ2

Aµ̂p

¢

,

(10)

x̂V =
1

σ2
all

¡

σ2
V (yA − µ̂A) + (σ2

A + σ2
p)(yV − µ̂V ) − σ2

V µ̂p

¢

,

(11)

where σ2
all ≡ σ2

A + σ2
V + σ2

p. From equations (10) and
(11), we obtain

∆̂x =
σ2

p

σ2
all

(∆y − ∆̂µ) +
σ2

A + σ2
V

σ2
all

µ̂p, (12)

where ∆̂x ≡ x̂A − x̂V ,∆y ≡ yA − yV , and ∆̂µ ≡ µ̂A −
µ̂V .

Then we can calculate P (∆̂x > 0|∆x) as follows:

P (∆̂x > 0|∆x) =
∫ ∆x

−∞
d∆̂′

x N

(

∆̂′
x; ∆̂µ − σ2

A + σ2
V

σ2
p

µ̂p, σ
2
A + σ2

V

)

.

(13)

Thus, from equations (9) and (13), we obtain

µpsycho = ∆̂µ − σ2
A + σ2

V

σ2
p

µ̂p, (14)

σpsycho = σ2
A + σ2

V . (15)

Now that we know how µpsycho depends on model
parameters and µ̂A, µ̂V , and µ̂p, next we must investi-
gate the time course of these µ̂s during the adaptation
period and their converging values. Thus, we can show
how the type of adaptation is determined.

4 Analysis of the model behav-
ior

It can be seen from equations (5), (6), and (7) that the
update rules of µ̂A, µ̂V , and µ̂p are independent from
each other given x̂A and x̂V . However, because x̂A

and x̂V depend on µ̂A(t), µ̂V (t), and µ̂p(t), the values
of µ̂s are not independently changed.

By substituting equations (10) and (11) into equa-
tions (5), (6), and (7), we obtain




µ̂A(t + 1)
µ̂V (t + 1)
µ̂p(t + 1)



 =





1 − a a −a
v 1 − v v
−p p 1 − p









µ̂A(t)
µ̂V (t)
µ̂p(t)





+





a
−v
p



∆y, (16)

where a,v, and p are defined by: a ≡ αA
σ2

A

σ2

all
, v ≡

αV
σ2

V

σ2

all
, and p ≡ αp

σ2

p

σ2

all
.

Although, in reality, yA and yV are determined ran-
domly from trial to trial, we can pursue the average
behavior of the model by fixing each of yA and yV to
its mean value during the adaptation period. We val-
idate this assumption later by numerical simulations.
From equations (2), (3), and (4), and our assumption
that the true values of µA and µV are zero, the mean
value of ∆y ≡ yA − yV is ∆adapt ≡ µp. We use the
notation ∆adapt to avoid confusion of µp with µ̂p.

With this assumption, we can solve equation (16)
explicitly with respect to t, which yields





µ̂A(t)
µ̂V (t)
µ̂p(t)



 =















a

z
∆y −

a

z
∆y(1 − z)t

−
v

z
∆y +

v

z
∆y(1 − z)t

p

z
∆y −

p

z
∆y(1 − z)t















, (17)

where z ≡ a + v + p.
By definition, z satisfies 0 ≤ z ≤ 1, and we omit

the case z = 0, because it is the case where all αs
are zero and the results are trivial. Then (1 − z)t

converges to zero. From equation (17), we can also
see that the converging speed of all µ̂s are the same.
Because αi represents the degree of adaptation in each
step, at first sight, it seems that the converging speed
is different if αi is different for different i. However,
due to the interaction of all µ̂s, their converging speed
are the same.

By substituting equation (17) into equation (14),
after some calculations, we obtain

µpsycho(t) = β∆adapt − β∆adapt(1 − z)t, (18)

where µpsycho(t) is the center of the psychometric func-
tion measured with µA(t), µV (t), and µp(t), and β is
defined as:

β ≡ 1
zσ2

all

(αAσ2
A + αV σ2

V − αp(σ2
A + σ2

V )). (19)

Thus, the direction of the shift in the center point
of the psychometric function relative to ∆adapt is de-
termined by the sign of β.

In reality, in order to measure µpsycho(t), test stim-
uli must be presented to the participant, and such
stimuli must change µ̂A(t), µ̂V (t), and µ̂p(t), if pre-
sented too many times. Therefore, µpsycho(t) can only
be measured by conducting the whole experiment mul-
tiple times, with a small number of test stimuli, and
averaging the results, like Miyazaki et al. did in [4].
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5 Numerical simulations

In deriving equation (17), we assumed ∆y was con-
stant with respect to t and investigated the mean be-
havior of the model. Here, we validate this assumption
using numerical simulations.

Parameter values were as follows: µp = 8◦, σA =
8◦, σV = 2.5◦, σp = 1◦, αA = 0.01, αV = 0.01, and
αp = 0.005. At each time step, we sampled xA from
a normal distribution with mean µp and variance σ2

p,
while xV was fixed to 0. We also sampled yA and
yV according to the noise distributions in equations(2)
and (3). Then the model observer judged x̂A and x̂V

based on equations (10) and (11) and updated µ̂A,
µ̂V , and µ̂A according to equations (5), (6), and (7).
This procedure was repeated 1000 times. We also in-
vestigated the time course of µpsycho. At each time
step, after updating all µ̂s, we measured the psycho-
metric function using the updated µ̂s. We presented
test stimuli with ∆x from −30◦ to 30◦ with 1◦ step,
each 1000 times. Then we calculated µpsycho(t) by fit-
ting the result to equation (9) by minimizing mean
squared error.

Figure 1: Time course of µ̂A, µ̂V , and µ̂A. Solid lines
show numerical simulation results and dashed lines
show corresponding analytical results.

Figure 2: Time course of µpsycho(t). The solid line
shows numerical simulation results and the dashed line
shows corresponding analytical result.

Figure 1 shows an example of the simulation result
for the time course of µ̂A, µ̂V , and µ̂A, together with
the analytical results in equation (17). Figure 2 shows
the simulation result for the time course of µpsycho,
together with the analytical results in equation (18).
These figures clearly show that the analytical results
in equations (17) and (18) correctly follow the average
behavior of µ̂s or µpsycho.

6 Conclusion

In this paper, we constructed an integrative Bayesian
model of adaptation and investigated what factors de-
termine the type of adaptation. We showed that the
type of adaptation was determined by the sign of β de-
fined in equation (19). Quantities σA, σV , and σp can
be measured or adjusted experimentally. Therefore,
according to our model, we might be able to control
experimentally the type of adaptation by adjusting the
parameters. However, it is not straightforward what
determines the adaptation parameters αA, αV , and
αp. The investigation of the meaning of them remains
as a future work.
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