
Multiple Cell Assemblies and Multi-Step Computation in Neural Networks

Makito Oku∗ Kazuyuki Aihara†,‡,∗
∗Department of Mathematical Informatics, Graduate School of Information Science and Technology,

The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
†Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

‡Aihara Complexity Modelling Project, ERATO, Japan Science and Technology Agency (JST),

3-23-5-201 Uehara, Shibuya-ku, Tokyo 151-0064, Japan

e-mail: oku@sat.t.u-tokyo.ac.jp

Abstract

The dynamics of a recurrent neural network model
in which localized learning patterns and asymmetric
interactions between the patterns are embedded is in-
vestigated. In the network, multiple cell assemblies
exist at the same time, and the combination of as-
semblies changes step by step. The network dynam-
ics exhibits characteristic behavior that the timings of
each appearance and disappearance of assemblies vary
much from trial to trial, while the sequential order of
events does not. These features are probably due to
the balance between two forces: the feedback within
each assembly that stabilizes the network state and
the asymmetric inter-assembly connections that keep
computation go on. The computational meanings of
this ‘assembly of assemblies’ framework as a mecha-
nism of multi-step computation are discussed.
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1 Introduction

A cell assembly is a collection of neurons those co-
operate temporarily as a functional unit. There are
considered a few mechanisms of a cell assembly, i.e.,
reverberation of excitatory signals1, populational os-
cillation at a specific frequency2,3, and synchronous
spiking4,5. Functional meanings of a cell assembly in-
clude the following. First, an assembly maintains in-
formation for a certain time after the input disappears,
which is regarded as working memory. At another
viewpoint, distant areas in the brain are dynamically
interrelated by an assembly so that they can exchange
information depending on the situation6–8.

It comes that the same neuron or connection has
multiple meanings, because it may belong to differ-
ent assemblies at different time. In general, assembly

switchings are considered in many contexts. For ex-
ample, associative thinking and mental imagery are
believed to correlate with assembly switchings in the
brain. Recently it is also experimentally observed that
the ongoing activity in the visual area of cats exhibits
spontaneous transitions between different patterns9.
Theoretical models have also been proposed to explain
the mechanism of the switching phenomena10,11.

By the way, multiple assemblies may coexist at the
same time in the real brain. Switchings of multi-
ple assemblies, however, have not been considered so
far. Here we propose a framework in which assem-
blies cooperate to evoke or suppress other assemblies,
and then the combination of assemblies in the network
changes one after another (see Fig. 1).

In this paper, the above mechanism of multi-step
computation is realized by a simple neural network
model. In the next section, the model is explained.
In section 3, the main results of test simulations are
shown. The computational meanings of multi-step
computation performed by multiple assemblies are dis-
cussed in section 4.

Cell assemblies

Fig. 1: Mechanism of multi-step computation. In the
neural network, multiple cell assemblies exist at the
same time. They cooperate to evoke or suppress other
assemblies. This triggers subsequent changes, which
may cause a chain of assembly switchings.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 506



2 Model

As a single neuron model, the simplest threshold
model with stochastic update is used:

yi =
N

∑

j=1

wijxj − θi, (1)

pi =
1

1 + exp(−εyi)
, (2)

where xi is the activity of neuron i (1 is spike and 0 is
resting), wij is the synaptic weight from neuron j to
neuron i, θi is the threshold, and pi is the probability
of the neuron i being on. The order of updating is
random.

Now we store in the network localized learning pat-
terns s1, . . . , sM , sα ∈ {−1, 0, 1}N (see Fig. 2). In
addition to symmetric connections that make the pat-
terns self-sustained, we also stored in the network
asymmetric inter-assembly connections:

W =
M
∑

α=1

sα.(sα)T + λ
∑

(α,β)∈A

sβ .(sα)T, (3)

where A is a set of index pairs and λ ≥ 0 is a pa-
rameter that determines the strength of asymmetric
connections.

-1

0

1

Fig. 2: Localized learning patterns. Three templates
of size 10× 10 are located in 30× 20 space with trans-
lation. Blank spaces are zero-padded. Templates are
borrowed from Adachi and Aihara (1997)10.

3 Simulation Results

The default parameter values for the following sim-
ulations are shown in Tab. 1. The components of set
A are manually decided so that more than two assem-
blies invoke one new assembly cooperatively, and as
long chain of assembly switchings as possible occurs.

Table 1: Parameter settings for the simulations.
Variable Value Explanation

N 600 number of neurons
M 18 number of patterns
L 18 number of index pairs in A
ε 0.1 slope of sigmoid function
θi 0 threshold
λ 0.2 asymmetry coefficient

Figure 3 shows the property of the weight matrix
W . First, the average of |wij | against the distance in
the two-dimensional space indicates that short-range
connections are dominant in the sense of absolute
value. On the other hand, the average of |wij−wji| in-
dicates that long-range connections have higher asym-
metry degree than short-range connections.
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Fig. 3: Property of the weight matrix. (Left) Average
of |wij | against the distance in the two-dimensional
space, and (Right) Average of |wij − wji| against the
distance.

Figure 4 shows an example of time sequence of
the state of the network. Starting from the initial
state (the top left edge), the combination of assem-
blies changed step by step. For example, at first the
cross-shaped assembly at the bottom left region dis-
appeared, and the triangle-shaped assembly emerged
there. Subsequently, another change started at the
bottom right region. Totally eight switchings of as-
semblies occurred. The last state remained stable for
longer runs.

The stepwise dynamics is also clearly seen in the
plot of the activity of each assembly measured by <
sα, x > /|sα|2 (see Fig. 5, Left). The time scale of the
durations of assemblies was much longer than that of
switchings.

Furthermore, the timings of each appearance and
disappearance of assemblies varied much from trial to
trial (see Fig. 5, right). On the other hand, the se-
quential order of the assembly switchings was roughly
kept in most trials.
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Time

Fig. 4: An example of time sequence of the state of
the network. Black and white cells show the firing
and resting states, respectively. Intervals between the
snapshots are two steps.
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Fig. 5: (Left) Activity plot of the trial in Fig. 4 , and
(Right) 20 trials plot of the activity of an assembly
(index = 17).

In the limitation of ε → ∞, where the system’s
dynamics becomes deterministic, the initial state and
all the intermediate states were stable.

When the value of λ was increased to 0.5, the whole
chain of switchings turned to take shorter time on av-
erage. However, the sequential order of switchings be-
came vague, because more than one switchings were
likely to occur simultaneously at different regions.

4 Discussion

The observed dynamical characteristics, large fluc-
tuations of the timings of assembly switchings and
high rate of reproduction of the similar sequential
order, can be explained by the two points below.
First, the property of the weight matrix shows that
the effect of feedback connections within each assem-
bly dominates the effect of asymmetric inter-assembly

connections. Second, the result of the limitation of
ε → ∞ shows that each assembly switching is driven
by stochastic fluctuations. From these evidences, it
is thought that switchings may occur only when the
stochastic fluctuations happen to largely overlap the
inter-assembly influence, and any other perturbations
are repaired by the dominant short-range connections.
The balance of the two types of connections may con-
trol the speed and accuracy of assembly switchings,
which is consistent with the result of larger λ’s case.
In general, high reliability per step is particularly im-
portant for complex computation that needs many
steps, because errors in computation accumulate in
each step.

Next, it should be clarified what advantage the ‘as-
sembly of assemblies’ framework has against the as-
sembly of single neurons. The most critical thing is
that in principle a single neuron cannot actively sus-
tain the state of itself without continuous external in-
put, while an assembly can do that. Accordingly, the
neurons that are involved in a formation of an assem-
bly will be able to be reused for other processing af-
ter the target assembly is completed. Of course, by
behaving as a group, assemblies perhaps have more
robustness against noise or uncertainty and can deal
with much complex nonlinear interactions than single
neurons. Furthermore, just as a single neuron pos-
sesses much more information than whether or not it
is activated, an assembly is perhaps able to represent
multi-modal information.

Although it is a difficult problem what should be
regarded as the output of the network, this frame-
work can be seen as a model that represents the input-
output mappings. Given an initial state as an input,
the network visits multiple intermediate states until
the output is obtained. A benefit for neural networks
to use this computational method may be that under
a certain limitation of neuron number and wiring com-
plexity, the method is efficient to embed in the network
as many input-output correspondence relations as pos-
sible. To check this idea, it is necessary to investigate
how much information processing ability networks of
different structures have on average.

By the way, some of neuroscientists think that in
a specific region in the brain information is explic-
itly coded, and a different region controls it12,13. On
the other hand, our standpoint is different because
in our framework both representation and operation
of information are performed in the same place. An
explanation why this is possible is that ‘drive sys-
tem’ assemblies, which make other assemblies switch,
and ‘response system’ assemblies, which are switched,
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are separated at each moment, but the assignment
changes depending on the context.

Finally, how can we measure the validity of this
framework? In the first place, there is no strong evi-
dence that neurons dynamically form functional clus-
ters in the real brain. Many neuroscientists, however,
predict that there must be neural activities that cor-
relate with our conscious experiences, and that would
be dynamically-formed cell assemblies consisting of a
number of neurons13–15. Such assemblies may be still
difficult to observe in the real brain. Furthermore, it
is almost impossible to prove the causal relationships
between sub-assemblies composing the principal as-
sembly that correlates with the unified consciousness.
Therefore, now we can only imply what computational
meanings inter-assembly interaction may have.

5 Summary

In this paper, a new framework, multi-step com-
putation performed by multiple cell assemblies, has
been proposed, and we constructed a simple neural
network model that realize the proposed mechanism
and investigated its dynamical characteristics by nu-
merical simulations. The network dynamics is sub-
ject to two types of connections, the feedback within
each assembly and asymmetrical inter-assembly con-
nections. The former dominates the latter, resulting
in accurate transitions in each step.

Although the proposed model used continuous mu-
tual excitations among neurons as a mechanism of cell
assembly, the fundamental ideas are probably able to
be shared with other mechanisms such as oscillation
and synchronization. Even though it is difficult to
show experimentally, the proposed mechanism could
be used in some form in the real brain.
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