
Humanoid Robot’s Motion Planning using

Genetic Network Programming

 Y.X. Sun and H. Ogai

Ogai Research Lab., Graduate School of Information, Production and Systems, Waseda University

2-7 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0135, Japan

 (Tel : +81-090-9581-4495)

(sand_sun@ruri.waseda.jp)

Abstract: We have developed the program for humanoid robot's whole body motion planning using Genetic Network

Programming (GNP). First we introduce the main idea and the way constructing GNP, then the method of applying

GNP to robot's whole body motion planning, and give the result of our research as a conclusion.

Keywords: Genetic Network Programming, population, individual, node, evaluation function

I. INTRODUCTION

Research on humanoid robot's motion planning has

been drawing attentions since long ago. So far, there

have already been many different methods solving this

problem. These methods are mainly divided into three

classes: motion planning based on motion capture

technology; one using pin/drag interface based on

Graphical User Interface (GUI); and motion planning in

multi-dimensional space by specifying the initial

posture and the final posture, then the system generates

continues motions connecting these two, a typical

method is rapid-exploring random trees (RRT) [1].

In the meantime, professor K.Hirasawa proposed an

evolutionary algorithm: Genetic Network Programming

(GNP) in the year of 2000 [2] and it's been gradually

applied in various research fields to solve different

kinds of practical problems like double-deck elevator

group supervisory control systems, data mining, stock

trading rules’ generation and comprehensible control

rules for real robots [3].

Inspired from these achievements, we tried effort to

develop a control system for humanoid robots’ motion

planning using GNP. Basically, the goal is to generate

control rules that manipulate robot's movements

connecting a preset initial posture and a final posture,

which in other words, is to find a new solution in the

3rd class of motion planning.

This paper is going to present the latest research

progress. It is organized as follows: firstly, give a brief

introduction to GNP in Section 2, then in Section 3,

bring out the research model built based on MATLAB

and detailed methods applying GNP to motion planning.

Finally, give the result of our research and relative

analysis as a conclusion.

II. GENETIC NETWORK PROGRAMMING

Nowadays, control systems are becoming large and

complex that it is not easy for us human beings to figure

out a clear and precise control rule in advance, so an

idea of developing an intelligent system that could find

optimal rules automatically popped out, and then,

inspired from GP and GA, GNP was proposed.

1. Structure of GNP

The fundamental elements that construct a network

for GNP are called nodes. Basically, two classes of

nodes are required: processing node and judgment node.

Processing nodes describe the actions of GNP and

judgment nodes judge the information from the

environment and choose to take actions according to the

judged result. They connect with each others to form a

control network. This kind of network is called an

individual. Fig.1 shows a typical structure of one

individual of GNP.

Fig.1 Basic structure of GNP

0

2 1

Processing Node

Judgment Node

Start Node

3

8

9

6 5
4

7

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 46

Fig.1 illustrates the phenotype of GNP’s network

structure, while Fig.2 shows the genotype of it:

Node 0 0 0 0 2 0

Node 1 2 1 5 3 0

Node 2 1 1 1 3 0 1 0

Node 3 2 2 5 6 0

Node 4 1 1 1 2 0 8 0

Node 5 1 3 1 8 0 6 0

Node 6 1 2 1 9 0 2 0

Node 7 1 2 1 1 0 4 0

Node 8 2 1 5 5 0

Node 9 2 2 5 7 0

NTi FIDi di Ci1 di2 …… Cin din

Fig.2 Genotype of Fig.1

We use a two-dimensional array to establish the

gene structure of an individual. Each row represents one

node, could either be a processing node or a judgment

node, it depends on the value of the first element in the

row array: NTi . In the above table, for example, NTi

equals 1 meaning a judgment node while 2 meaning a

processing node.

FIDi describes the function of the ith node and di

presents the time cost (delay) for the node to carry out

its action or judgment.

After deciding the node’s type, function and delay

time, we need to decide which node does the present

node connect. Here Cin denotes the connections and

din denotes the connection time delay. Note that if the

node is a processing node, it can only have one

connection and if it is a judgment node, the number of

connections can be more than one.

2. Genetic Operations in GNP

There are three types of the genetic operations in

GNP: selection, crossover and mutation.

Selection: Individuals are initialized randomly at the

beginning of the program. After mutation or crossover,

apparently the population becomes larger. The selection

operation can help the program select the individuals

with better performance among the population and keep

it within a fit size.

We take two ways to carry out selection operation:

tournament selection and elite selection. Tournament

selection is carried out between any two individuals.

The program calculates two individuals’ fitness and

dumps the low valued one. Elite selection calculates all

individuals’ fitness and sets a bottom line of it. Ones

that are higher than the line are chosen and the rest are

discarded.

Crossover exchanges the sub-network of two parent

individuals to create new individuals. Here the sub-

network can be several nodes which connect each other,

can be only one point, or just several points which are

randomly chosen from parents.

Mutation takes effect in a single individual. It is

used to change one node’s connection branches, the

function, or even its node type. This is another way of

producing new kind of individuals.

Both crossover and mutation offers new individuals

in a population for selection to select better ones.

Fig.3 Crossover in GNP

Fig.4 Mutation in GNP

III. MODEL AND APPLICATION DESIGN

1. Modeling

We built a model of humanoid robot which is

illustrated in Fig.5. It has 19 degrees of freedom and

change node type

change branch change branch

change node type

exchange

parents

offspring

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 47

each joint’s range of rotatable angle has been specified

generally according to human beings.

The data structure of the robot is a tree structure,

each joint has a sister branch and a child branch. Start

from the head, we can use forward kinematics to

calculate the posture of the model robot. Besides, with

the mass of each joint set during the initialization,

calculation of the robot's center of mass is possible.

Fig.5 Model of a humanoid robot

2. Application Design

In this chapter, we are to develop an application that

can find optimal control rules to generate motion series

which connecting the preset initial posture and final

posture. We start from designing the various nodes (type

and related functions) that are intended for constructing

individuals.

A. Processing Node

Since the model we built has 19 degrees of freedom,

the actions that processing nodes take are to manipulate

the joint angles of these 19 joints. Each node takes

charge of one joint and can only choose to adjust its

angle to plus or minus a certain value. So if we want the

entire body of the robot be controlled, at least 38 kinds

of processing nodes are needed (2 nodes, respectively,

doing plus and minus for each joint).

For more adaptive control, even the step length of

the adjustments can have many choices, like one degree

per action or two. But by doing this, the kinds of

processing node grow extremely large and system

becomes complex, so here in our research, we just take

the simplest way: 38 kinds of processing nodes.

In order to make sure that the robot can finally reach

the desired posture, we set a constant command in all

processing nodes, that is: after taking its action, the joint

is forced to get closer by one degree to its final value.

B. Judgment Node

During the robot’s movement, the most important

thing is to keep balanced. Here we suppose our robot’s

movement is slow and steady, so the momentum which

might affect the robot’s balance is not considered. Then,

the only element relative to balance is the center of

mass (CoM). So we design the judgment conditions to

be: which quadrant does the CoM locate in X-Y

coordinate system, and then choose actions according to

the judged result.

Table.1 Node Assignment

Node Type Functions

Processing

Node

Joint 1 + 1° Joint 1 - 1°

Joint 2 + 1° Joint 2 - 1°

… … … …

Joint 19 + 1° Joint 19 - 1°

Judgment

Node

Node Kind X-Axis Y-Axis

1 + +

2 + -

3 - +

4 - -

C. Evaluation Function

The evaluation function is used to calculate the

fitness of each individual. There are two parts that add

up to present the fitness value: one is the total steps that

the robot’s all 19 joints took to perform the desired

motion; the other is the CoM’s average deviation from

the track connecting the CoM at start and the one at the

end, which is easy to understand by referring to Fig.6.

Fig.6 Deviation of CoM from desired track

Evaluation Function:

fitness = n ∗ α +
 di

n
∗ β

where n denotes the step count, di n calculates

the average deviation, and α, β are weight coefficients.

One point should be clarified is that, the desired

track of the CoM is not necessarily to be a straight line,

a curve might do better in some circumstances. Here in

our experiment, we take the track as a straight line.

Once all the three elements are decided, the genetic

operations can be carried out. Fig.8 illustrates the flow

chart of the application.

Y

X

CoM

Track

di

start

end

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 48

Fig.7 Flow Chart of Program

In case that too many individuals were discarded

after selection, we here set a data pool storing randomly

generated individuals to relief the population crisis that

might happen in chance.

IV. EXPERIMENT RESULT

Considering that the number of node functions is

large, during the initialization period, if we directly let

the computer generate all the individuals randomly,

maybe none of them has the ability to simply control all

the joints. Though after genetic operations, there might

be several ideal individuals produced, we decided to

help accelerate the evolution procedure by adding

several man-made individuals that has the ability to

control all the joints. Then let the genetic operations be

carried out. Table.2 shows the parameters of the

program:

Table.2 Parameters Specifications

Selection Rate 0.24

Crossover Rate 0.08

Mutation Rate 0.08

Population(Individuals) 25

Judgment Node 20

Processing Node 80

Starting Node 1

Generation 30

After trained the population using the above

parameters by several target motions, we obtained some

individuals that can control the robot to perform some

simple movements. Then we went on to train these

individuals for a test motion, we found that there is still

space for improvement referring to Fig.8 which shows

the fitness value curve as generations grow.

Fig.8 Fitness Curve

Using the elite individual selected from the last

generation, we control the model robot to perform a

simple motion of “kick” whose snapshots are shown in

Fig.9.

Fig.9 Snapshots of “kick”

V. CONCLUSION

So far, we have developed an application using GNP

algorithm to generate control rules for a humanoid robot.

But there is still space for improvements: to generate

complex motions by setting several transitional key

postures; to add new kinds of judgment node judging

momentum and as mentioned in Section.4: in the

initialization phase, we still have to help computer

generate the first generation, or it will take too much

time to finally obtain a usable individual, so how to

improve the efficiency during initialization phase will

also be our future research target.

REFERENCES

[1] Kajita S (2005), Humanoid Robot (in Japanese).

pp.163-170

[2] Katagiri H, Hirasawa K, Hu J (2000), Genetic

Network Programming – Application to Intelligent

Agents. IEEE pp.3829-3834

[3] Murata T and Okada D (2006), Using Genetic

Network Programming to Get Comprehensible Control

Rules for Real Robots. 2006 IEEE Congress on

Evolutionary Computation, pp.1983-1988

Start

Initialization

Fitness Calc

ulation

Selection

Crossover

& Mutation

Last
Generation ?

End

Pool

No

Yes

50

60

70

80

90

100

110

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Generation

F
itn

ess

Trend Line

Average Fitness

Elite Fitness

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 49

