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Abstract: We have developed the program for humanoid robot's whole body motion planning using Genetic Network 

Programming (GNP). First we introduce the main idea and the way constructing GNP, then the method of applying 

GNP to robot's whole body motion planning, and give the result of our research as a conclusion. 

 

Keywords: Genetic Network Programming, population, individual, node, evaluation function 

 

 

I. INTRODUCTION 

Research on humanoid robot's motion planning has 

been drawing attentions since long ago. So far, there 

have already been many different methods solving this 

problem. These methods are mainly divided into three 

classes: motion planning based on motion capture 

technology; one using pin/drag interface based on 

Graphical User Interface (GUI); and motion planning in 

multi-dimensional space by specifying the initial 

posture and the final posture, then the system generates 

continues motions connecting these two, a typical 

method is rapid-exploring random trees (RRT) [1].  

In the meantime, professor K.Hirasawa proposed an 

evolutionary algorithm: Genetic Network Programming 

(GNP) in the year of 2000 [2] and it's been gradually 

applied in various research fields to solve different 

kinds of practical problems like double-deck elevator 

group supervisory control systems, data mining, stock 

trading rules’ generation and comprehensible control 

rules for real robots [3].  

Inspired from these achievements, we tried effort to 

develop a control system for humanoid robots’ motion 

planning using GNP. Basically, the goal is to generate 

control rules that manipulate robot's movements 

connecting a preset initial posture and a final posture, 

which in other words, is to find a new solution in the 

3rd class of motion planning.  

This paper is going to present the latest research 

progress. It is organized as follows: firstly, give a brief 

introduction to GNP in Section 2, then in Section 3, 

bring out the research model built based on MATLAB 

and detailed methods applying GNP to motion planning. 

Finally, give the result of our research and relative 

analysis as a conclusion. 

 

II. GENETIC NETWORK PROGRAMMING 

Nowadays, control systems are becoming large and 

complex that it is not easy for us human beings to figure 

out a clear and precise control rule in advance, so an 

idea of developing an intelligent system that could find 

optimal rules automatically popped out, and then, 

inspired from GP and GA, GNP was proposed. 

1. Structure of GNP 

The fundamental elements that construct a network 

for GNP are called nodes. Basically, two classes of 

nodes are required: processing node and judgment node. 

Processing nodes describe the actions of GNP and 

judgment nodes judge the information from the 

environment and choose to take actions according to the 

judged result. They connect with each others to form a 

control network. This kind of network is called an 

individual. Fig.1 shows a typical structure of one 

individual of GNP. 

 

 

 

 

 

 

 

 

 

 

Fig.1 Basic structure of GNP 
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Fig.1 illustrates the phenotype of GNP’s network 

structure, while Fig.2 shows the genotype of it: 

 

Node 0 0 0 0 2  0 
 

Node 1 2 1 5 3  0 

Node 2 1 1 1 3  0 1  0 

Node 3 2 2 5 6  0  

Node 4 1 1 1 2  0 8  0 

Node 5 1 3 1 8  0 6  0 

Node 6 1 2 1 9  0 2  0 

Node 7 1 2 1 1  0 4  0 

Node 8 2 1 5 5  0 
 

Node 9 2 2 5 7  0 

 

NTi FIDi di Ci1 di2 …… Cin  din  

Fig.2 Genotype of Fig.1 

 

We use a two-dimensional array to establish the 

gene structure of an individual. Each row represents one 

node, could either be a processing node or a judgment 

node, it depends on the value of the first element in the 

row array: NTi . In the above table, for example, NTi  

equals 1 meaning a judgment node while 2 meaning a 

processing node. 

FIDi describes the function of the ith  node and di  

presents the time cost (delay) for the node to carry out 

its action or judgment. 

After deciding the node’s type, function and delay 

time, we need to decide which node does the present 

node connect. Here Cin  denotes the connections and 

din  denotes the connection time delay. Note that if the 

node is a processing node, it can only have one 

connection and if it is a judgment node, the number of 

connections can be more than one. 

2. Genetic Operations in GNP 

There are three types of the genetic operations in 

GNP: selection, crossover and mutation. 

Selection: Individuals are initialized randomly at the 

beginning of the program. After mutation or crossover, 

apparently the population becomes larger. The selection 

operation can help the program select the individuals 

with better performance among the population and keep 

it within a fit size. 

We take two ways to carry out selection operation: 

tournament selection and elite selection. Tournament 

selection is carried out between any two individuals. 

The program calculates two individuals’ fitness and 

dumps the low valued one. Elite selection calculates all 

individuals’ fitness and sets a bottom line of it. Ones 

that are higher than the line are chosen and the rest are 

discarded. 

Crossover exchanges the sub-network of two parent 

individuals to create new individuals. Here the sub-

network can be several nodes which connect each other, 

can be only one point, or just several points which are 

randomly chosen from parents. 

Mutation takes effect in a single individual. It is 

used to change one node’s connection branches, the 

function, or even its node type. This is another way of 

producing new kind of individuals. 

Both crossover and mutation offers new individuals 

in a population for selection to select better ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Crossover in GNP 

 

 

 

 

 

 

 

 

 

 

Fig.4 Mutation in GNP 

 

III. MODEL AND APPLICATION DESIGN 

1. Modeling 

We built a model of humanoid robot which is 

illustrated in Fig.5. It has 19 degrees of freedom and 
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each joint’s range of rotatable angle has been specified 

generally according to human beings. 

The data structure of the robot is a tree structure, 

each joint has a sister branch and a child branch. Start 

from the head, we can use forward kinematics to 

calculate the posture of the model robot. Besides, with 

the mass of each joint set during the initialization, 

calculation of the robot's center of mass is possible.  

 

 

 

 

 

 

 

 

 

 

Fig.5 Model of a humanoid robot 

2. Application Design 

In this chapter, we are to develop an application that 

can find optimal control rules to generate motion series 

which connecting the preset initial posture and final 

posture. We start from designing the various nodes (type 

and related functions) that are intended for constructing 

individuals. 

A. Processing Node 

Since the model we built has 19 degrees of freedom, 

the actions that processing nodes take are to manipulate 

the joint angles of these 19 joints. Each node takes 

charge of one joint and can only choose to adjust its 

angle to plus or minus a certain value. So if we want the 

entire body of the robot be controlled, at least 38 kinds 

of processing nodes are needed (2 nodes, respectively, 

doing plus and minus for each joint). 

For more adaptive control, even the step length of 

the adjustments can have many choices, like one degree 

per action or two. But by doing this, the kinds of 

processing node grow extremely large and system 

becomes complex, so here in our research, we just take 

the simplest way: 38 kinds of processing nodes. 

In order to make sure that the robot can finally reach 

the desired posture, we set a constant command in all 

processing nodes, that is: after taking its action, the joint 

is forced to get closer by one degree to its final value. 

B. Judgment Node 

During the robot’s movement, the most important 

thing is to keep balanced. Here we suppose our robot’s 

movement is slow and steady, so the momentum which 

might affect the robot’s balance is not considered. Then, 

the only element relative to balance is the center of 

mass (CoM). So we design the judgment conditions to 

be: which quadrant does the CoM locate in X-Y 

coordinate system, and then choose actions according to 

the judged result. 

Table.1 Node Assignment 

Node Type Functions 

Processing 

Node 

Joint 1 + 1° Joint 1 - 1° 

Joint 2 + 1° Joint 2 - 1° 

… … … … 

Joint 19 + 1° Joint 19 - 1° 

Judgment 

Node 

Node Kind X-Axis Y-Axis 

1 + + 

2 + - 

3 - + 

4 - - 

 

C. Evaluation Function 

The evaluation function is used to calculate the 

fitness of each individual. There are two parts that add 

up to present the fitness value: one is the total steps that 

the robot’s all 19 joints took to perform the desired 

motion; the other is the CoM’s average deviation from 

the track connecting the CoM at start and the one at the 

end, which is easy to understand by referring to Fig.6. 

 

 

 

 

 

 

 

 

 

Fig.6 Deviation of CoM from desired track 

 

Evaluation Function: 

fitness = n ∗ α + 
 di

n
∗ β 

where n denotes the step count,  di n  calculates 

the average deviation, and α, β are weight coefficients. 

One point should be clarified is that, the desired 

track of the CoM is not necessarily to be a straight line, 

a curve might do better in some circumstances. Here in 

our experiment, we take the track as a straight line. 

Once all the three elements are decided, the genetic 

operations can be carried out. Fig.8 illustrates the flow 

chart of the application. 
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Fig.7 Flow Chart of Program 

In case that too many individuals were discarded 

after selection, we here set a data pool storing randomly 

generated individuals to relief the population crisis that 

might happen in chance. 

 

IV. EXPERIMENT RESULT 

Considering that the number of node functions is 

large, during the initialization period, if we directly let 

the computer generate all the individuals randomly, 

maybe none of them has the ability to simply control all 

the joints. Though after genetic operations, there might 

be several ideal individuals produced, we decided to 

help accelerate the evolution procedure by adding 

several man-made individuals that has the ability to 

control all the joints. Then let the genetic operations be 

carried out. Table.2 shows the parameters of the 

program: 

Table.2 Parameters Specifications 

Selection Rate 0.24 

Crossover Rate 0.08 

Mutation Rate 0.08 

Population(Individuals) 25 

Judgment Node 20 

Processing Node 80 

Starting Node 1 

Generation 30 

After trained the population using the above 

parameters by several target motions, we obtained some 

individuals that can control the robot to perform some 

simple movements. Then we went on to train these 

individuals for a test motion, we found that there is still 

space for improvement referring to Fig.8 which shows 

the fitness value curve as generations grow. 

Fig.8 Fitness Curve 

Using the elite individual selected from the last 

generation, we control the model robot to perform a 

simple motion of “kick” whose snapshots are shown in 

Fig.9. 

 

 

 

 

 

 

Fig.9 Snapshots of “kick” 

 

V. CONCLUSION 

So far, we have developed an application using GNP 

algorithm to generate control rules for a humanoid robot. 

But there is still space for improvements: to generate 

complex motions by setting several transitional key 

postures; to add new kinds of judgment node judging 

momentum and as mentioned in Section.4: in the 

initialization phase, we still have to help computer 

generate the first generation, or it will take too much 

time to finally obtain a usable individual, so how to 

improve the efficiency during initialization phase will 

also be our future research target. 
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