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Abstract

In this paper, we propose a design method of the in-
verted pendulum system with structured uncertainty.
We consider such uncertainty is caused by a measure-
ment error in the rotation angle of the pendulum and
causes to the system structure that can not be in-
cluded in the nominal parameter. For the obtained
uncertain system, we apply the integral tracking con-
trol and guaranteed cost control to design a robust
stable tracking control system. At the last, we show
the effectiveness of our method through numerical ex-
ample.

1 Introduction

In the robust control problem, it is important how
to evaluate effect of uncertainty. Such uncertainty ef-
fects a bad influence to the system performance. In
general, such uncertainty is not contained in the nom-
inal system, then, for the design of the robust sta-
ble control system, it is need to express the struc-
tural property of the instrument. Kimura showed the
derivation method of the structured uncertainty that
is caused from the higher order terms in the Taylor
expansion[1]. In this paper, we consider the effect
of uncertainty to the performance of system that is
caused by measurement error. The effect of uncer-
tainty is formulated as the structured uncertainty cor-
responds to the system matrices. For this system, to
show the effectiveness of our proposed method, we ap-
ply the integral tracking control system and guaran-
teed cost control design method.

In section 2, we will propose the formulate method
of the robust inverted pendulum-car system model
which included uncertain element. In section 3, we
will apply the integral tracking control system to the
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obtained system, and guaranteed cost control method.
In section 4, we will present a numerical solution and
a simulation result.

2 Derivation of the Uncertain Inverted
Pendulum Model

In this section, we will derivate the linear system of
the inverted pendulum-car model with structured un-
certainties. Now we consider the inverted pendulum-
car model that takes following parameters,

M :
m : a Mass of the Pendulum [kg]
I : the Inertia Moment of the Pendulum [kg - m?]

L : the Distance from the Rotation Axis to the Center
of Gravity of Pendulum [m)]

a Mass of the Car [kg]

g : Gravity [m/sec?]

.

o(
u(
z(t

an Angle of the Pendulum [rad]

~+

) :
) : an External Force on the Car [N] (Input)
) :

a Position of the Car [m] (Output)

The system state variables are obtained by the mea-
sured value of sensors in the instrument or observa-
tion equipments, e.g. potentiometer, image data of
video camera. Unfortunately, these measurement val-
ues contain measurement deviation caused by a lower
resolution limit of the sensor, noise of sensor and so on.
Then it needs to include the effects of such disturbance
in the system dynamics. To deal with this problem,
we will introduce following uncertainty in the angle of
pendulum.

0(t) = 0o(t) + A9 (1)

where, 6(t) is a measured angle of the pendulum con-
sist with 6y (t) and Af. 0y(t) is a nominal element and



A is a disturbance element which caused by mea-
surement error. From the fundamental formulae of
the trigonometric functions, we have

sin(0(t)) sin(0o(t) + A0)

sin(0g(t)) cos(A8) + cos(y(t)) sin( AH),

cos(0(t)) =

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th *09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

0
Ac-mL

B(C) = I(m+M)O+A02-mL2

Ac? -mL? + 1
I(m+ M)+ Ac? - mL?

Here we clarified a structure of the effect of the un-

cos(6o(t) + A0)
cos(0y (1)) cos(Af) — sin(fy(t)) sin(AH)

Here we assume that Af takes very small value, then
sin(Af) — 0. We estimate a maximum variation value
of cos(Af) as constant value Ac. From the lineariza-
tion by using Taylor expansion, we have sin(6y(t)) ~

certainty about axis of the pendulum. Note that if
Af = 0, that is Ac = 1, A(§) and B({) equivalent
to nominal system Ay and By. Let Ap and Bp are
disturbanced system with the maximum value of the
variety of uncertainty Afg,

00(t), cos(0p(t)) ~ 1. Thus,

sin(0(t)) ~ Ac - 6y(t), (2)
cos(0(t)) = Ac, (3)
%(Sm(e)(t))) ~ Ac- o (t), (4)
d2

ﬁ(cos(e(t))) ~ 0. (5)

A dynamics of the inverted pendulum-car system is
expressed as

Ay
B, =

AO _AD7
By — Bp.

Consequently, we obtain LTT system with structured
uncertainties.

@(t) = A(§)z(t) + B(Qu(t) (8)

where, A(£) and B(() are real matrices of appro-
priate size.

I0o(t) = VIsin(Bo(t)) — HIL cos(fo(t)), A() = Ao+ A4, (9)
d? B(() = By+ AB. (10)
H = mit)+ ML (sin(60(1)), |
dt Ap and By are the nominal elements, AA and AB are
_ & . the uncertain elements of the system.
V. = mL- ﬁ(c%(@o(t))) + myg,
. p
In virtue of (2)-(5), we have i=1
q
Ac? - m?gL? AB = GBj, |G <1, q=
A(t) Tom 3 + a2 -marL oW ; e
2,72
+ Ac_ml ;_I u(t), (6) & and (; are scalar values which denote the size of
I(m+ M)+ Ac®-mML uncertainties. A; and B; are matrices of structure of
A (M the uncertainties.
o(t) = ¢ mgL(M +m) Here we define output y(t) = z(t), then the output

I(m+ M)+ Ac? - mL? o(t)
Ac-mL
~ I(m+ M) +Ac2-mL2u(t)' Q)

Here we define the state vector of a linear system is
x(t) = [ 6o(t) Oo(t) =(t) (t)]"

and the system matrices are

0 1 0 0
Ac-mgL(M + m) 00 0
_ I(m+ M)+ Ac? - mL?
A2 - m2al2
= SR L 00 0

I(m+ M)+ Ac? - mL?
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matrix C is obtained as

yit)=Cz(t)=[0 0 1 0]zt  (13)

All system matrices are of appropriate dimension.

3 Stabilization of the Inverted Pendu-
lum System

In this section, for the structured uncertain inverted
pendulum system, we synthesize the integral tracking
control system. Next, we design the robust control
system by using guaranteed cost control methd[2].
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3.1 The Integral Tracking Control System

In this paper, we assume that the controller can
use the system state vector @(t). Input signal to the
system is v(t) = v. Error e(t) of output signal of
nominal system y(t) and

input signal v(t) is given as

e(t) =v—y(t) =v— Cx(t).

The derivative of the deflection e(t) is

where, AA.(£) and AB.({) are uncertainties defined
in (11) and (12). Upper bound matrix Ug(-) is

UE(AAe(f)’ ABe(C)? P? R)

» q
=" LA LT+ > M|y M F

(19)
i=1 j=1
where, | - | denotes matrix that have absolute value of
each elements. L;, M;, A; and T'; are
LE(PAc + ALP)Li = A (20)

M}P(B,;R'BY + B.oR™'BL)PM; =T; (21)

é(t) = —Ca(t) (14)
Here we differentiate the system (8), we have
(1) = A(§)z(t) + B(O)u(t) (15)

where, A; and IT'; are diagonal matrices which have
eigenvalues on the diagonal elements. L; and M, are
orthogonal matrices which constructed from the cor-
responding orthogonal vectors. From the solution P

From (14) and (15), we obtain the augmented system
&e(t) = Ac(§)ze(t) + Be(Que(?) (16)
where input vector is u.(t) = u(t), state vector is

ze(t) = [2(t)T e(t) ]

System matrices are defined as follows

ade = [ A€ O],
o = | 7).

Augmented nominal and uncertain system matrices
Aco, Beo, Aei and B.; are defined as same form in
(11) and (12) corresponding to based system matri-
ces A(),B(),Ai and Bj.

3.2 Stabilization by using Guaranteed
Cost Control

Here, we apply the guaranteed cost control design
method to the augmented integral tracking control
system (16). Let us consider the following performance
index.

J = /Om{wZ(t)Qwe(t) + uT (t) Rue(t) }dt (17)

The stochastic algebraic Riccati equation based on the
eigenvalue upperbound is
CTC + PAy + AL P — PBoR'BLP
+ UE(AA€(£)7 ABE(C)» Pv R) = OS><5 (18)
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of (18), we obtain the feedback gain matrix F,
F.=-R'BLP (22)

we divide the matrix F, into F,; and F,o correspond
to the structure of state vector x(t).

ue(t) = — Fexe(t)
- (1)
= _[Fel F€2]|:e(t):|
=  — Fai(t) — Fae(t) (23)

vector u(t), we integrate (23).
- / Fod(t)dt — Fo / e(t)dt
CFaa(t) - Fu / e(t)dt

The block diagram of this system is illustrated in fig.1.

To obtain input

/ w(t)dt =

u(t)

(24)

x/ = Ax+Bu

State Space

Fig.1 : Block diagram of the Integral Tracking
System

4 Numerical Example

We used MATLAB software to solve the prob-
lem and simulate the system by using SIMULINK.
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The stochastic algebraic Riccati equation is solved by
Runge-Kutta method, standard linear quadratic reg-
ulator problem is solved by function lqr of control
system toolbox in MATLAB.

System parameters are m = 1, M =1,L = 1,1 =
1/3,9 = 9.8 and Af = 0.07. The weighting matrices of
performance index are @ = [ 1, 1, 0.01, 0.01, 1],R =
1. The solution of the stochastic algebraic Riccati
equation (Proposed method) is

P =
801.8824 280.2749 93.5159 119.8140 —28.1920
280.2749  99.3540 35.0210 44.7910 —10.4630
93.5159  35.0210 21.2097 20.9584 —7.7061
119.8140  44.7910 20.9584 25.4665 —6.3596
—28.1920 —-10.4630 —7.7061 —6.3596 5.0472

Feedback gain is
Fq = [ —72.3137 —23.7796 —4.2459 —6.5014 ],
Foo = 11901 |

Eigenvalues of the closed-loop system are

( —0.7374, —3.7640, —3.3146, —0.6253 £ 0.60801 )

The solution of the algebraic Riccati equation (Or-
dinary method) is
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Fig.2 : Simulation results

5 Conclusion

In this paper, we considered the effect of the un-
certainty in rotation angle and proposed the design
method for the robust inverted pendulum-car system
model with structured uncertainty. We extended this
system to the integral tracking control system and ap-
plied guaranteed cost control design method to obtain
the robust stable tracking control system. Through
the numerical example, we showed the effectiveness of

P =
[ 621.7728 213.4494 57.1646 80.2692 —20.6857 |
213.4494 74.4296 21.2874 29.9650 —7.6877
57.1646  21.2874 10.8762 12.0466 —4.9095 |,
80.2692  29.9650 12.0466 16.3369 —4.5157
—20.6857 —T7.6877 —4.9095 —4.5157 3.1351

Feedback gain is

= [ —63.8542 —20.6857 —3.1351 —4.9095 ],
F} =] 1.0000 |

Eigenvalues of the closed-loop system are

(—3.7314, —3.1562, —0.7844, —0.4059 + 0.6868 )

Table 1: Comparison of the results
| Ordinary Proposed
Overshoot [%] 7 0.5
Delay Time [sec] 5.28 5.42

For these two cases, we simulate the disturbed system.
In time interval [0, 3), the reference is v = 0, In [3, 20),
v = 0.1 and [20,—40), v = 0. Overshoot and delay
time of the position of the car are in Table 1. The sim-
ulation result shows that our proposed method barely
increase the delay time (1.02% increased), but widely
reduce the overshoot (93.9% decreased).
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Our proposed method. Future study is to apply our
method for more complex model, e.g. double inverted
pendulum system.
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