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Abstract
We propose robust l∞ preview control for biped

walking pattern generation. First, we state robust l∞
preview control with robustness against initial value
and apply it to the cart-table model. Next, we pro-
pose a method to reduce the conservativeness of the
robust l∞ preview control and an algorithm to solve
it. Finally, the effectiveness of our proposed methods
is illustrated by simulation.

1 Introduction

Recently, attention has been focused on the study
of biped walking for life size humanoid robots. Gen-
erally, an approach to biped walking is the method of
adjusting futural ZMP(Zero Moment Point) proposed
in Reference [2]. ZMP changes as a step function when
the humanoid robot shifts the way of supporting from
one leg to both legs. Moreover, it is known that the
change of ZMP generates after that of the center of
gravity does. Therefore, we cannot use normal servo
control in regarding ZMP as a step input. This prob-
lem is solved by applying the preview control with the
performance index of l2 norm [3] that use futural in-
formation of reference inputs [2]. However, since the
performance index of l2 norm minimizes the integral
square of the error between references and outputs,
the maximal value of the error is not always small.
Therefore, there exists possibility of resulting in top-
pling. There are several researches using the maximal
value as performance index [1, 4, 6]. We propoesed l∞
preview control via LMI(Linear Matrix Inequality [1])
optimization problem by using l∞ norm as the perfor-
mance index [5]. Since l∞ norm can evaluate ZMP er-
ror directly, it is expected that this approach prevents
the humanoid robot from toppling. However, the up-
per bound of performance index of robust l∞ preview
control was conservative in spite of having good per-
formance in simulation.

In this paper, we propose a method to reduce the
conservativeness of the robust l∞ preview control and

an algorithm to solve it. Finally, the effectiveness of
our proposed methods is illustrated by simulation.

2 Walking pattern generation based on
cart-table model

We consider a cart-table model [2] as follows:

p = xc −
zc

g
ẍc (1)

where p is the position of ZMP, zc is the height of the
center of gravity, g is the gravity acceleration, xc is the
position of the cart. We define the input as the time
derivative of the horizontal acceleration of the cart and
construct a continuous-time state space system. With
discretizing the system as the sampling time h, the
discrete-time state space equation is transformed into
the following equation.

xk+1 = Axk + Buk (2a)
pk = Cxk (2b)

where

A :=





1 h h2

2
0 1 h
0 0 1



 , B :=





h3

6
h2

2
h



 ,

C :=
[

1 0 − zc

g

]

We define the error ek between the reference ZMP pref
k

and the measured ZMP pk as follows:

ek := pref
k − pk (3)

In order to eliminate the steady state error, we con-
struct the error system with the first-order difference
value of the state and the error as the state variable.

x̄k+1 = Āx̄k + B̄∆uk + BR∆pref
k+1, (4a)

ek = C̄x̄k (4b)
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where

Ā :=
[

I −CA
0 A

]

, B̄ :=
[

−CB
B

]

,

BR :=
[

I
0

]

, C̄ :=
[

1 0 0 0
]

,

x̄k :=
[

ek

∆xk

]

,

∆xk := xk − xk−1,

∆uk := uk − uk−1,

∆pref
k := pref

k − pref
k−1

Then, by using x̄k and the reference up to N-step fu-
ture, the preview control input ∆u is given by

∆uk = −Fx̄k +
N

∑

j=1

fj∆pref
k+j (5)

3 l∞ preview control

In order to apply l∞ control, we transform the sys-
tem (4) into the following augmented error system
with ∆pref

k+1 ∼ ∆pref
k+N [3].

x̃k+1 = Ãx̃k + B̃∆uk (6a)

ẽk = C̃x̃k (6b)

where

x̃k :=

















x̄k

∆pref
k+1

∆pref
k+2
...

∆pref
k+N

















, Ã :=

















Ā BR 0 · · · 0
0 0 I 0 0
...

... 0
. . . 0

... 0 0 0 I
0 0 0 · · · 0

















B̃ :=
[

B̄ 0 · · · · · · 0
]T

,

C̃ :=
[

C̄ 0 · · · 0
]

,

pref
k+N+α := pref

k+N

The preview input ∆uk is also transformed as follows:

∆uk = −F̃ x̃k (7)

where F̃ :=
[

F −f1 · · · −fN

]

. Here, we give
an initial value defined by

x̃0 :=
[

x̄T
0 , ∆pref

1 , ∆pref
2 , · · · , ∆pref

N

]T

As performance index, we consider the l∞ norm to
evaluate the maximum of the error as follows:

Γ∞ := max
k≥0

[

ẽT
k ẽk

]1/2
(8)

Then we can obtain l∞ preview controller minimizing
the upper bound of the performance index (8) (See
Reference [5]).

4 Robust l∞ preview control

In order to avoid obstacles, it is necessary to change
walking pattern of humanoid robots on the way. This
means that the preview trajectory need be adjusted
from the scheduled preview trajectory. The l∞ pre-
view control is dependent on the initial value and its
influence is crucial. We consider l∞ preview control
with robustness against the initial value.

4.1 l∞ preview control with robustness
against initial value

Let us consider the set Ω defined by

Ω(x̃0) := Co{x̃[1]
0 , x̃

[2]
0 , · · · , x̃

[M ]
0 } (9)

where Co denotes the convex hull. If x̃0 ∈ Ω, then x̃0

satisfies

x̃0 =
M
∑

i=1

αix̃
[i]
0 (10)

where

αi ≥ 0,
M
∑

i=1

αi = 1 (11)

In order to evaluate the worst case of (8) for x̃0 ∈ Ω,
we introduce new performance index defined by

Γmax
∞ := max

x̃0∈Ω
Γ∞ (12)

Then we obtain the following lemma on the upper
bound of Γmax

∞ .

Lemma 1 [5] Assume that x̃0 ∈ Ω in the system (6).
The upper bound γ∞ satisfying Γmax

∞ ≤ γ∞ can be ob-
tained by solving the following LMI optimization prob-
lem with respect to Q > 0, L and γ∞ > 0. Then the
optimal feedback gain of (7) is given by F̃ = LQ−1.

min
Q, L

γ∞ (13)
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subject to
[

−Q (ÃQ − B̃L)T

ÃQ − B̃L −Q

]

< 0 (14a)
[

−Q x̃
[i]
0

(x̃[i]
0 )T −γ∞

]

≤ 0, for i = 1, 2, · · · , M

(14b)
[

−Q (C̃Q)T

C̃Q −γ∞I

]

≤ 0 (14c)

4.2 Reduction of conservativeness

Since the upper bound γ∞ of Γmax
∞ obtained by

Lemma 1 becomes coservative [5], we consider reduc-
ing the conservativeness. Experientially, the l∞ pre-
view control has almost the maximal value Γ∞ in time
k = 1. We obtain the next theorem by using this fact.

Theorem 1 Assume that x̃0 ∈ Ω in the system (6)
and ∥ẽ0∥ ≤ ∥ẽ1∥. Then the upper bound γ∞ satisfying
Γmax
∞ ≤ γ∞ can be obtained by solving the following

BMI(Bilinear Matrix Inequality) optimization problem
with respect to Q > 0, F̃ and γ∞ > 0.

min
Q, F̃

γ∞ (15)

subject to
[

−Q (ÃQ − B̃F̃Q)T

ÃQ − B̃F̃Q −Q

]

< 0 (16a)
[

−Q (Ã − B̃F̃ )x̃[i]
0

(x̃[i]
0 )T (Ã − B̃F̃ )T −γ∞

]

≤ 0

for i = 1, 2, · · · , M (16b)
[

−Q (C̃Q)T

C̃Q −γ∞I

]

≤ 0 (16c)

Proof: From (11) and (16b), we obtain
[

−Q x̂1

(x̂1)T −γ∞

]

=

[

−Q
∑M

i=1 αi

∑M
i=1 αix̂

[i]
1

(
∑M

i=1 αix̂
[i]
1 )T −γ∞

∑M
i=1 αi

]

=
M
∑

i=1

(

αi

[

−Q (Ã − B̃F̃ )x̂[i]
0

(x̂[i]
0 )T (Ã − B̃F̃ )T −γ∞

])

≤ 0

The above means x̂T
1 Q−1x̂1 ≤ γ∞. By using this fact,

(16a) and (16b), we obtain the following inequality.

γ−1
∞ x̂T

k ĈT Ĉx̂k ≤ x̂T
k Q−1x̂k ≤ x̂T

1 Q−1x̂1 ≤ γ∞

By ∥ẽ0∥ ≤ ∥ẽ1∥, this implies Γmax
∞ ≤ γ∞. ♠

If the maximal value Γ∞ is in time k = 1, the invariant
ellipsoid is not conservative. Therefore, it is important
to choose Ω(x̃0) appropriately.

We apply the following LMI-based iterative algo-
rithm to solve Theorem 1.

Iterative algorithm

Step1: Obtain an initial solution F̃ (0) by Lemma 1.

Step2: Solve the follwoing two problems alternately
when k = 1, 2, · · ·
a) Minimize γ

(k)
∞ subject to (16) for given F̃ (k)

where γ
(k)
∞ := minQ γ∞.

b) Obtain F̃ (k+1) minimizing γ̂
(k+1)
∞ subject to

(16) for given Q(k) where γ̂
(k+1)
∞ := γ∞.

Step3: Repeat Step2 until |γ(k+1)
∞ − γ

(k)
∞ | < ε for

some ε > 0. ♠

By using the above algorithm, we obtain Theorem 2.

Theorem 2 Given a certain initial solution of F̃ (0),
the above LMI-based iterative algorithm is always fea-
sible, and the gain F̃ (k+1) obtained in Step2-b satisfies

Γmax
∞ ≤ · · · ≤ γ(k+1)

∞ ≤ γ̂(k+1)
∞ ≤ γ(k)

∞

≤ · · · ≤ γ̂(1)
∞ ≤ γ(0)

∞ (17)

5 Simulation on biped walking pattern
generation

We made simulation of shifting the reference ZMP
into 0.2[m] with the control approach of Section 2. We
give zc = 0.85[m], g = 9.81[m/s2] and h = 0.04[s] in
this simulation. We also give N = 50 as the number
of preview steps.

We state the case that the reference ZMP is changed
in 2.8[s] from the scheduled preview trajectory. We
show the simulation results of the trajectories of the
reference and measured ZMPs and those of the refer-
ence ZMP and the center of gravity in Figure 1 and
2, respectively. We also show the magnified figure of
Figure 1 in Figure 3. When we calculated the upper
bound of the worst case of l∞ norm by the approach of
Lemma 1 and Theorem 2, we obtained γ∞ = 0.104[m]
and γ∞ = 0.0499[m] for the following Ω(x̃0), respec-
tively.

Ω(x̃0) := Co{x̃[1]
0 , x̃

[2]
0 , x̃

[3]
0 , x̃

[4]
0 }

where x̃
[1]
0 := [e + δ1, ∆x[1] + δ2, ∆x[2], ∆x[3], ∆pref

1 ,

· · · , ∆pref
N ], x̃

[2]
0 := [e + δ1, ∆x[1] − δ2/2, ∆x[2],
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∆x[3],∆pref
1 , · · · , ∆pref

N ], x̃
[3]
0 := [e − δ1/2, ∆x[1] +

δ2,∆x[2], ∆x[3],∆pref
1 , · · · , ∆pref

N ], x̃
[4]
0 := [e −

δ1,∆x[1]−δ2, ∆x[2],∆x[3], ∆pref
1 , · · · , ∆pref

N ] and e :=
3.97× 10−3, x[1] := 7.28× 10−3, ∆x[2] := 1.82× 10−2,
∆x[3] := 8.78 × 10−2, δ1 := 5.00 × 10−3, δ2 := 5.00 ×
10−4, ∆pref

6 = 0.1, ∆pref
i = 0 (i = 1, · · · , 50, i ̸= 6).

In Figures 1, 2 and 3, the solid line denotes the con-
troller by Theorem 2, the dashed line does the con-
troller by Lemma 1 and the dotted line does the ref-
erence ZMP with change in 2.8[s]. In Figure 3, the
maximum of the error between the reference and mea-
sured ZMPs in using the the controller by Theorem 2 is
smaller than that in using the controller by Lemma 1.
Therefore, we see that the conservativeness is reduced.
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Figure 1: Trajectory of reference and measured ZMPs
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Figure 2: Trajectory of center of gravity

6 Conclusion

In this paper, we proposed the robust l∞ preview
control for biped walking pattern generation. First,
we showed l∞ preview control with robustness against
initial value. Next, we proposed a method to reduce
the conservativeness of Lemma 1 and an algorithm to
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Figure 3: Trajectory of reference and measured ZMPs
(Magnified figure of Fig. 1)

solve it. Finally, we showed the effectiveness of our
proposed method by simulation.
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