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Abstract

A modular robot can be built with a shape and
function that match the working environment. We de-
veloped a four-arm modular robot system which can
be configured in a planar structure. A learning mech-
anism is incorporated in each module constituting the
robot. We aim to control the overall shape of the robot
by accumulation of the autonomous actions resulting
from the individual learning functions. Considering
that the overall shape of the modular robot depends
on the learning condition in each module, this control
method can be treated as a dispersion control learn-
ing method. The learning object is the cooperative
motion between adjacent modules. The learning pro-
cess proceeds based on Q-learning by trial and error.
We confirmed the effectiveness of proposed technique
by computer simulation.

1 Introduction

Most of traditional robots have been built to per-
form particular tasks in place of humans. In future,
however, robots are expected to be able to perform
a wide range of tasks autonomously. Conventional
robots are limited to performing just one or two tasks
assumed by the designer. It is almost impossible for
a single robot to adapt to various kinds of tasks and
environments. To overcome this limitation, a mod-
ular robot was proposed as a system that can be
adapted to various given tasks and unknown environ-
ments [1, 2, 5, 6]. A modular robot can be defined
as a robotic system constructed from a set of stan-
dardized components, so-called ”modules”. With this
approach, the robot body is reconfigured for various
complex tasks, instead of designing a new, different

robot for each task. Modules, by themselves, cannot
perform tasks, but when many of them are connected
together, a new system can be obtained to do compli-
cated tasks.

A modular robot changes its shape by changing
the connections between modules in order to meet the
demands of different tasks or different working envi-
ronments. Over the last ten years, research in this
field has focused on versatility and adaptability as-
pects, but less effort has been made in the field of self-
reconfigurable modular robots that can autonomously
change their configuration [10, 11, 12].

In this study, we developed a multi-arm modular
robot, and we propose a system that incorporates a
learning mechanism of each module constituting the
modular robot. We aim to control the overall shape of
the modular robot by the accumulation of autonomous
actions arising from the learning mechanism of each
module. Since the overall shape of the modular robot
depends on the learning result of each module, this
method can be treated as a dispersion control learning
method [7, 8, 9]. The cooperation between a module
and an adjacent module is the object of learning. The
learning process involves trial and error based on Q-
learning [13, 14]. We confirmed the effectiveness of the
proposed technique by computer simulation.

2 Function of a module and Q-learning

Figure 1 shows a model of the four-arm module
and the assumed modular robot constructed from such
modules [3, ?]. Each arm has the ability to be con-
nected to and disconnected from other arms of the
module. The shape of the robot can be reconfigured
by changing connections with adjacent modules ac-
cording to preset rules, as shown in Figure 1. Here,
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Figure 1. Model of four-arm module and modular
robot.

Figure 2. Three robot shapes considered (LINE,
MASS and RING).

the connection state of an arm is expressed by two
values (binary) as follows: connected (s = 1), not con-
nected (s = 0). Since there are four arms per mod-
ule, the connection states of the arms in one module
can be expressed by four bits. The following four ba-
sic operations are defined for each arm: (i) arm is
turned clockwise [MOVE CW], (ii) arm is turned
counter-clockwise [MOVE CCW], (iii) arm is con-
nected [CONNECT], and (iv) arm is disconnected
[DISCONNECT]. These four basic actions cannot
be performed by a single module; they are performed
by the cooperative behavior of two or more modules.
An additional standby action [STAY] is also added.
As a result, there are 17 kinds of action a in total: 4
arms × 4 basic actions + 1 standby action. A module
acts in accordance with the rule of state s versus ac-
tion a. The appearance probability of an action a in
the state s is optimized by Q-learning.

Figure 2 shows three robot shapes that we consider.
They are called the LINE shape, MASS shape, and
RING shape. Since the action of each module is de-

Figure 3. Flow of learning algorithm.

cided by Q-learning, the overall shape of the robot is
controlled by Q-learning. The reconfiguration process
of the robot shape was examined by computer simula-
tion.

To develop a system in which the shape of the robot
is automatically reconfigured, each module proceeds
with Q-learning while repeating trial and error actions
in the early stage. This Q-learning is not performed
uniformly for the entire robot, but is performed inde-
pendently in each module.

Figure 3 shows the flow of the learning algorithm.
First, one module is chosen at random from the group
of modules constituting the robot. The chosen module
decides an action in accordance with its own Q value.
After checking whether the action is valid, the module
carries out the action. Next, the action is evaluated,
and the Q value is updated in accordance with the
evaluation result. This series of processes is defined
as one step”. The number of modules that act in one
step is assumed to be only one. According to an ob-
served state st at time t, an action ak for the module
is selected with probability P (st, ak) presented in Eq.
(1) below through a Boltzmann selection method. If
it is judged to be an invalid action, it is not carried
out. In that case, this action is dealt with by imposing
a penalty value on the Q value. In Eq. (1), ANUM

is the total number of actions, and Q(st, ak) is an ex-
pectation value of action ak (k = 1, 2, · · · , ANUM) in
a state st. T is the Boltzmann temperature presented
in Eq. (2). In Eq. (2), τ is a time constant.

P (st, ak) =
e

Q(st,ak)

T

ANUM
∑

k=1

e
Q(st,ak)

T

(1)

T = 2 · e−
t
τ (2)
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Then, Q(st, ak) is updated as shown in Eq. (3) accord-
ing to an obtained reward Reward by carrying out an
action based on Eq. (1).

Q(st, ak) ← (1− α) ·Q(st, ak)

+α
{

Reward + γ max
a′

Q(st+1, a
′)

}

(3)

Reward =
Evalt−1 −Evalt

Evalt + 1
− Penalty (4)

Here, α is a learning rate, γ is a discount rate,
max

a′

Q(st+1, a
′) is a maximum expectation value in

state st+1 observed at the next time step, and a′ is an
action indicated by this maximum expectation value.
In Eq. (4), Penalty is a penalty value, and Evalt is
an evaluation value of the robot shape at time t.

3 Computer Simulation

We simulated the reconfiguration of the modular
robot shape from an initial shape to (i) the LINE
shape and (ii) the MASS shape. The initial shape
of the robot was set so that modules formed a chain.
The evaluation value is Evalt when the shape of the
robot is evaluated from the viewpoint of an outside
observer at time t. First, the shape of the robot was
estimated from the positions of all modules in the sim-
ulation. Next, Evalt was calculated from the differ-
ence between the estimated shape and the requested
shape (LINE and MASS). In the case of the LINE
shape, the deviation on either side of the x axis or the
y axis is the evaluation value Evalt concerning the po-
sition of all modules. On the other hand, in the case
of the MASS shape, the deviation of the position of
all modules is the evaluation value Evalt.

Minimizing Evalt is equivalent to achieving the re-
quested shape in both cases. The learning process
proceeds by comparing the evaluation value after an
action with the evaluation value before the action.

The convergence time in learning and the required
memory storage capacity depend on the size of the
learning space, calculated by the product of the total
number of states s and the total number of actions a
in the Q-learning. We considered two ways of reducing
the learning space to improve the learning efficiency.
The first way was to exclude the choice of the arm from
the learning object, reducing the number of possible
actions from 17 to 5. The learning space was reduced
by 70 % as a result. We called this the ”action only”
method. The second way is to pair the [CONNECT]
action in one module and the [DISCONNECT] ac-
tion in an adjacent module and to unify them by intro-
ducing a new [REVERSE] action. As a result, the
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Figure 4. Comparison of 5,000 learning steps (LINE
shape).
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Figure 5. Comparison of 500,000 learning steps
(LINE shape).

total number of actions decreased from 17 to 7, and
the learning space was reduced by 59 %. We called
this the ”new model” method.

Figures 4 and 5 show the simulation results of recon-
figuration based on the evaluation value of the LINE
shape in a robot body composed of 10 modules. In
these two figures, the solid line indicates the results ob-
tained without using either of the methods described
above (”normal”). The dotted line indicates the ”ac-
tion only” type, and the broken line indicates the ”new
model” type. The horizontal axis is the number of
learning steps, and the vertical axis is the mean value
of Reward for each module. In Figures 4 and 5, the
upper limit was set to 5,000 steps and 500,000 steps,
respectively. The ”action only” type converges earlier
to a certain value at the end of the learning step.

As shown in Figure 4, the amount of change in
Reward with the ”normal” type is large in the ini-
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tial stage of the learning process, and the final conver-
gence is insufficient. On the other hand, the ”action
only” type has a more expensive Reward at the early
stage,and Reward becomes a constant, stable value
at the last stage, showing successful convergence. The
”new model” type shows the best result in terms of the
rate of rise in Reward at the last stage and the stabil-
ity after reaching convergence. For the ”action only”
type, the learning object was 5 actions. Therefore, it
determines that learning is completed in fewer steps,
but there is no optimization related to the choice of
arm because arm choice was excluded from the learn-
ing object. Therefore, the final convergent value does
not reach the optimum value. The learning space of
the ”new model” type is larger than that of the ”action
only” type. However, because the choice of arm is con-
tained in the learning object of the ”new model” type,
the final convergent value reaches the optimum value.
As shown in Figure 5, if a sufficient number of learn-
ing steps for all three types is ensured, it is possible to
achieve a final convergent result that is equivalent to
that of the ”new model” type. Figure 6 shows one ex-
ample of the LINE shape and the MASS shape after
learning with the ”new model” type. In this figure,
the blocks with numbers represent modules (numbers
0, 1, 2, · · · are modules’ IDs), and the ”**” mark indi-
cates the connections between modules. The resulting
shape is not necessarily always optimized. However,
we confirmed that the shape of the robot could be
controlled to a certain extent without using communi-
cation between modules.

Figure 6. LINE shape (left) and MASS shape (right)
obtained by using the ”new model” type.

The evaluation value to form the RING shape was
defined as follows. The requested radius of the RING
shape is D0. An arbitrary module is M . A module
adjoining M is M1. The furthest module from M is
M2. An evaluation value Evalt is defined by Eq. (5)
based on a distance D between the position at distance

Figure 7. Reconfiguration result for RING shape
(D0 = 9.0).
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Figure 8. Evolution of Reward value in reconfigura-
tion of the RING shape (D0 = 9.0).

D0 and the position of M from the midpoint of M1 and
M2.

Evalt = e(D0−D)2 (5)

This rule was established based on the circular align-
ment algorithm of multi-robot systems[15].

Figures 7 and 8 show the simulation results of recon-
figuration based on the evaluation value of the RING
shape. In this simulation, we specified D0 = 9.0
with 40 modules used, and the number of learning
steps was set to 500,000. In Figure 8, the horizon-
tal axis is the learning step number, and the vertical
axis is the Reward value. As shown in this figure, the
Reward value increased as the step number increased,
showing that the learning function proceeded. How-
ever, the modules did not fully converge to the RING

shape. Figures 9 and 10 show the evolution of the ob-
tained Reward value of each module constituting the
robot. Figure 9 shows the case of the LINE shape,
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Figure 9. Comparison of evolution of Reward value
for each module in the case of the LINE shape.
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Figure 10. Comparison of evolution of Reward value
for each module in the case of the RING shape (D0 =
9.0).

and Figure 10 shows the case of the RING shape with
D0 = 9.0. The obtained Reward value of all modules
tends to increase in the case of the LINE shape. The
final convergent value for the obtained Reward is the
same for all modules. Although there was a difference
in the obtained Reward between the modules in the
first half of the learning process, this difference grad-
ually reduced in the latter half. On the other hand, in
the case of the RING shape, convergence could not
be confirmed from the obtained Reward between each
module in the learning process. The obtained Reward

values for each module diverged in the latter half of the
learning process. Comparing Figure 9 with Figure
10, we found that, in order to obtain a good result, it is
necessary to reduce the differences in the obtained re-
ward among the modules. In the learning result shown
in Figure 10, the module which converged to the high-
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Figure 11. The total number of invalid actions in
100,000 steps for ID:7 (left) and ID:16 (right).
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Figure 12. The total number of invalid actions in
500,000 steps for ID:7 (left) and ID:16 (right).

est obtained Reward was ID:7, and the module which
converged to the lowest obtained Reward was ID:16.
Figures 11 and 12 show the number of invalid actions,
determined based on the Q value, in module ID:7 and
module ID:16, showing the states after 100,000 steps
and after 500,000 steps, respectively. In each figure,
the left part shows module ID:7, and the right part
shows module ID:16. The horizontal axes of the fig-
ures show the state of the module, and the vertical
axes show action 0:[STAY], 1:[MOVE CW] for arm
No. 1, 2:[MOVE CCW] for arm No. 1, 3:[MOVE
CW] for arm No. 2, 4:[MOVE CCW] for arm No.
2, 5:[REVERSE] for arm No. 3, and 6:[REVERSE]
for arm No. 4. Here, arm Nos. 1–4 correspond to the
four arms of a module. This figure shows the num-
ber of invalid actions that occurred in the first 5,000
steps. The actions in the state indicated by the thick
red part shows actions that were often judged invalid.

It was confirmed that the number of actions judged
invalid gradually reduced as the learning process pro-
ceeded. There were more actions judged invalid in
the module with ID:16 than in the module with ID:7
in the latter half of the learning process. In other
words, the learning process for the module with ID:16
was delayed. An action judged invalid is an action
that cannot be carried out in the actual environment.
Therefore, when an invalid action is output, the learn-
ing process cannot proceed. As a result, the learn-
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ing process of the module that outputs more actions
judged invalid is delayed. It is possible that this prob-
lem might be improved by making the learning process
proceed equally.

4 Conclusion

In this research, we examined the reconfiguration
control of the shape of a modular robot. A robot com-
posed of four-arm modules was considered as a model.
We proposed providing each module with a learning
function based on Q-learning. We verified the valid-
ity of the proposed technique by computer simulation.
Our results showed that, when learning of each mod-
ule was integrated in the overall robot, the requested
shape of the robot could be realized.

Problems that we currently face in advancing our
work include: (1) increasing the number of modules;
(2) expanding the approach to a 3-D environment; and
(3) verifying the performance in real environments.
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