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Abstract: Conventional linear prediction algorithm with sinusoidal signal for the estimation of motor’s speed has a 
limitation in the range of low speed. If an estimator can get additional information then its performance is able to be 
improved. A sinusoidal signal has the natural property which is quadratic equation so called Pythagorean identity. 
However, since the equation was nonlinear form, it needs change to a linear constrained condition. Adding it to the 
measurement equation, it is possible to derive a linear state space equation which has more information without 
additional sensor. The experimental results and the computer simulations show that the performance of the proposed 
algorithm in this study is better than that of the conventional algorithm. It supports that the additional constrained 
condition can improve the estimator’s performance. 
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I. INTRODUCTION 

Angular velocity is a necessary information for 
motor control. If a system is under the condition which 
is a varying velocity or repeated running and stopping, 
it is more important for motor control to get the velocity. 
Motor’s angular velocity can be obtained by various 
sensors like tachometer, latch type Hall sensor, linear 
type Hall sensor, current sensor and shunt resistor [1]. 
Among these sensors, the shunt resistor has the best cost 
advantage. However, since an estimator using the shunt 
resistor can be derived from the motor parameters, it is 
not suitable for the common device. One of the methods 
not using the motor parameters is to use the linear Hall 
sensor. Its output signal represents the motor’s rotation. 
The signal is a continuous sinusoidal wave. Therefore, 
an estimator using the linear Hall sensor can estimate 
motor’s speed precisely. The linear Hall sensor’s output 
is represented by a sinusoidal signal and an additive 
noise in [2]. And using linear prediction, a linear state 
space equation is derived. With this equation, one can 
estimate motor’s speed and it shows good performance 
as tachometer but not in the low speed range. The motor 
can be operated at various velocities. And it is able to 
repeat running and stopping. Therefore, the estimator 
needs additional information to complement the error at 
low speed.  

The additional information like a constrained 
condition can improve the accuracy of the estimator [3]. 

The sinusoidal signal has natural constrained condition. 
When one has two sinusoidal waves which are delayed 
90 degree in phase each other, the square of the sine 
plus the square of the cosine is always 1 which is called 
Pythagorean identity. With this quadratic constrained 
condition, the estimator in [2] can enhance the accuracy 
at low speed. To adopt this condition into the linear state 
space equation, it needs the change from the quadratic 
form to a linear form. The linear constrained condition 
can be used like additional measurement information as 
in [3].  

In this paper, we set sinusoidal signal with additive 
white noise to measurement data and estimate the 
frequency of these data. To solve the low speed problem, 
cos( )α  is multiplied to the measurement data so that 
state space equation has cos( )kw  and sin( )kw  in state 
values. Since each state has 90 degree phase delay, these 
two states must satisfy the Pythagorean identity. This 
gives another information without additional sensor. To 
change Pythagorean identity to a linear form constraint, 
we use the past estimated value. The derived linear 
constraint is added into the measurement equation of the 
linear state space equation. The linear constraint is not 
the same as the original constraint. It causes error in the 
measurement matrix. Therefore, we use the Robust 
Least Square (RLS) algorithm to compensate these 
measurement uncertainties [4]. To prove the 
performance of the proposed algorithm, the motor 
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installed in a car window system is used and its rotation 
is obtained from the linear Hall sensor. With the sensor 
data, we estimated motor’s speed and compared the 
results with those of [2]. The proposed algorithm shows 
enhanced performance not only in the low speed range 
but also the high range. When the motor was stopped, 
the proposed algorithm estimated the speed with lower 
error than [2]. We also simulated the proposed algorithm 
under varying frequencies. The analysis by the mean of 
estimation error and the root mean square error shows 
that the additional constrained condition can improve 
the performance of the estimation. 

II. LINEAR STATE SPACE MODEL 

The sinusoidal signal obtained from the linear Hall 
sensor which has stationary DC offset can be 
represented by linear prediction method [5]. 

cos( )k k k kd A w k v= +       (1) 

{ }2 1 1 22cos( )k k k k k k kd d w d v v v− − − −+ = − + +  (2) 
where 

kA is amplitude of the Hall sensor, kw is angular 
velocity and kv is white noise having the zero mean and 
the variance of 

kR . With multiplying cos( )α  to (2), 
one can derive the following equation contained sine 
and cosine function. 

{ }

{ }{ }

2

1 1

2

1 1

2

( ) cos( )
         2cos( ) cos( )
                            ( ) cos( )
         2 cos( ) sin( )sin( )
                                                   ( ) cos(

k k

k k k

k k

k k k k

k k

d d
w d v

v v
d v w w

v v

α

α

α

α α

−

− −

−

− −

−

+

= −

+ +

= − + +

+ + )α

(3) 

(2) and (3) represent linear state space equation which 
the measurement matrix has uncertainty, 
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and 
kw is modeling error under the assumptions of 

white and zero mean. (5) shows the state variable 
kx  

that has two sinusoid signals which are delayed 90 
degree in phase each other.  

III. QUADRATIC CONSTRAINED 
CONDITION 

The two state variables, cos( )kw  and sin( )kw , have 
following constraint naturally in (5). 

2 2cos ( ) sin ( ) 1k kw w+ =   (6) 
(6) can be considered another measurement information 
without additional sensor. However, since (6) is 
quadratic form, it is not suitable for the linear state 
equation. To change (6) to linear form, one can use a 
past estimation result as follows: 
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With (7), the quadratic constraint becomes another 
measurement. With augmenting (7) to (4), (4) can be re-
written 
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The augmented equation (8) has also uncertainty in 
measurement matrix. To obtain a compensated 
estimation results from these uncertainties, we use the 
RLS algorithm in [4].  

IV. LINEAR FREQUENCY ESTIMATOR 

The RLS algorithm in [4] can be summarized as 
follows: 
Measurement update: 
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Time update: 
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where λ  is weight parameter which is able to adjust 
along the system characteristic and 

kW  is stochastic 
property of the measurement uncertainty, 

kaHΔ . The 
stochastic property of 

kaHΔ can be represented by 
definition in (8) as follows: 
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(13) is covariance of error which caused by 
transforming quadratic equation (6) to linear constraint 
(7).  The error covariance matrix is also tuning 
parameter like λ .  

V. EXPERIMENTAL RESULTS 

To prove the performance of the proposed algorithm, 
the motor installed in a car window system is used and 
its rotation is obtained from the linear Hall sensor. With 
the sensor data, we estimated motor’s speed and 
compared the results with those of [2]. Since the 
algorithm in [2] showed good performance as 
tachometer, we did not compare with tachometer in 
these experiments. Parameters of the estimator are as 
follows: 
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The linear Hall sensor output is represented in Fig. 1. At 
the around 3000 step and the around 6000 step, there 
was a speed change. The motor was stopped at around 
7200 step. The estimated motor’s speed obtained from 
the linear Hall sensor data was shown in Fig. 2. The 
proposed algorithm had the lower error than [2] at both 
the low and the high speed range. However, in stopped 
condition, proposed algorithm showed bias error. The 

approximation of the linear constrained condition from 
quadratic equation might cause these errors. 

The computer simulation results along varying 
frequencies were represented in Fig. 3 and Fig. 4. The 
mean of the estimation error in Fig. 3 showed both two 
algorithms increased bias error as frequency decreased. 
Root means square of estimation error in Fig. 4 showed 
also both two algorithms decrease performance as 
frequency come down. However, in both two cases, the 
proposed algorithm was better than [2]. Therefore, the 
results supported that the additional constrained 
condition can improve the estimator’s performance. 

VI. CONCLUSION 

To estimate motor’s speed from the sinusoidal signal 
obtained by the linear Hall sensor, we established linear 
state pace equation reflecting the constraint and used the 
RLS algorithm to cope with the measurement 
uncertainty. Since a conventional linear prediction 
algorithm has a limitation of the range in the low speed, 
we gave the additional information to estimator which is 
quadratic equation so called Pythagorean identity that is 
natural property in sinusoidal signal. However, since the 
equation is a nonlinear form, we change it to a linear 
constrained condition. Adding it to the measurement 
equation, it is possible to derive another linear state 
space equation which has more information without 
additional sensor. The experimental results and the 
computer simulations show that the performance of the 
proposed algorithm is better than that of the 
conventional algorithm. Moreover, it supports that the 
additional constrained condition can improve the 
estimator’s performance 

ACKNOWLEDGEMENT 

This work has been supported by Korea Sanhak 
Foundation. 

REFERENCES 

[1] Raj Mohan Bharadwaj and Alexander G. Parlos, 
“Neural speed filtering for induction motors with 
anomalies and incipient faults,” IEEE/ASME trans. 
Mechatronics, vol. 9, no. 4, pp. 679-688, Dec. 2004. 
[2] G. H. Choi, W. S. Ra, T. S. Yoon, J. B. Park, “ Low-
cost tachometer based on the recursive frequency 
estimation for automotive applications,” SICE Annual 
Conference 2007, Sep. 17-20, 2007, Kagawa University, 
Japan, 2007. 
[3] Gupta Nachi, “Kalman filtering in the presence of 
state space equality constraints,” Proc. of the 26th 

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 142



 

Chinese control conference, Jul. 26-31, 2007, 
Zhangjiajie, Hunan, China, 2007. 
[4] W. S. Ra, I. H. Whang, and J. B. Park, “Robust 
weighted least quares range estimator for UAV 
applications,” SICE Annual Conference 2008, Aug. 20-
22, 2008, Electro-Communications University, Japan, 
2008. 
[5] H. C. So. and P. C. Ching, “Adaptive algorithm for 
direct frequency estimation”, IEE Proc.-Radar Sonar 
Navig., vol. 515, no. 6, pp. 359-364, 2004. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Linear Hall sensor

step

vo
lta

ge
 [V

]

 
Fig 1. Linear Hall sensor output 
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Fig 2. Frequency estimation results  

from linear Hall sensor 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80
Performance of esitmator along frequency : error mean

frequency [Hz]

es
tim

at
ed

 fr
eq

ue
nc

y 
[H

z]

 

 
true frequency
WRLS[2]
proposed

 
Fig 3. Performance of estimator along frequency : mean 

of estimation error 
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Fig 4. Performance of estimator along frequency : root 

mean square of estimation error 
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