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Abstract
Reflectometry is a kind of cable fault diagnosis.

There are various kinds of reflectometries such as time
domain reflectometry(TDR), frequency domain reflec-
tometry(FDR), and joint time-frequency domain re-
flectometry(TFDR). In this paper, we propose a new
fault location estimation method using residual of AR
coefficient estimation. Proposed fault distance estima-
tion method models the reference signal as a simple
second order AR coefficient, and estimates reference
signal and reflected signal via robust weighted least
square(RWLS) estimator. Using residual of estima-
tion, proposed fault distance estimator estimates the
fault location of the cable. The performance of the
proposed method is verified by simulations and exper-
iments.

1 Introduction

Defected cable may cause fatal disaster. In order
to prevent disaster, fault detection method is needed.
There are many kinds of cable fault diagnosis. The
reflectomery that stems from sonar and radar system
is one of the cable fault diagnosis. There are vari-
ous reflectometries, such as TDR, FDR, and TFDR.
Each reflectometry has different analysis method and
characteristics[1]. However, main idea of reflectometry
is the same. At the fault location of cable, transmit-
ted reference signal is reflected due to the impedance
miss matching. Fault location is estimated based on
the time delay between the reference signal and the
reflected signal.

The Gaussian enveloped linear chirp signal is
adopted as a reference signal on the TFDR method.
In the TFDR, the joint time-frequency energy distri-
bution of the reference signal and reflected signals is
computed. And the time-frequency cross correlation
is computed using the joint time-frequency distribu-
tion. The time delay information is obtained from the

time-frequency cross correlation[1]. Accurate fault dis-
tance estimation in the TFDR is possible due to the
time-frequency cross correlation function. However,
the computational burden is a fatal obstruct to do
the real-time implementation. From the view point
of the estimator for the time delay between the refer-
ence signal and the reflected signal, cable fault diagno-
sis is interpreted as a signal modeling and estimation
problem. In time of arrival estimation problem, the re-
flected signal is modeled as an attenuated and time de-
layed version of the reference signal, and use the least
square(LS) estimator to estimate the time delay[4]. In
this paper, we introduce another approach to time de-
lay estimation. Reference signal is modeled with sec-
ond order AR coefficients for minimizing the compu-
tational burden. The RWLS[2] estimator is designed
to estimate the AR coefficients. When the reference
signal or the reflected signal is detected, residual has
peak amplitude that is due to the conversions rate of
the RWLS estimator. Using this phenomenon, we are
able to estimate the time delay.

2 AR Modeling for Chirp Signal

The reflected signal in reflectometry is assumed as
an attenuated and time delayed version of the refer-
ence signal. If reference signal is modeled via AR coef-
ficient, the reflected signal also satisfies the AR model-
ing coefficients because the reflected signal is a replica
of the reference signal. In this paper, the reference
signal is a linear chirp signal that has linearly increas-
ing frequency. The linear chirp signal is represented
as follows,

sk =Mej( 1
2 β(Tsk)2+ω0(Tsk)−π

2 ) (1)

=M [cos(
1
2
β(Tsk)2 + ω0(Tsk)− π

2
)

+ jsin(
1
2
β(Tsk)2 + ω0(Tsk)− π

2
)],
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Figure 1: AR coefficient estimation : 100.08m

where M is the amplitude of linear chirp signal, β is
frequency sweep rate, Ts is sampling interval and ω0

is start frequency. For notational convenience, θk is
defined as follows:

θk = (
1
2
β(Ts(k))2 + ω0(Ts(k))− π

2
). (2)

Using the θk, sk−1 and sk−2 are given by,

sk−1 = M [cos(θk−1) + jsin(θk−1)]. (3)
sk−2 = M [cos(θk−2) + jsin(θk−2)]. (4)

For deriving the AR coefficients equation, sk is rewrit-
ten by,

sk + sk−2

=2Mcos(−βT 2
s (k − 1)− ω0Ts)

× [cos(
1
2
βT 2

s ){cos(θk−1) + jsin(θk−1)}

+ jsin(
1
2
βT 2

s ){cos(θk−1) + jsin(θk−1)}]
=2cos(−βT 2

s (k − 1)− ω0Ts)

×
(
cos(

1
2
βT 2

s ) + jsin(
1
2
βT 2

s ))
)
sk−1 (5)

For notational convenience, Ak is defined as follows:

Ak = −βT 2
s (k − 1)− ω0Ts. (6)

Equation(5) is can be rearranged by,

sk = 2cos(Ak) (7)

×
(
cos(

1
2
βT 2

s ) + jsin(
1
2
βT 2

s ))
)
sk−1 − sk−2.
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Figure 2: Residual of AR coefficients estimation:
100.08m

Complex signal sk can be represented by the real and
imaginary terms. So we represent the complex signal
sk as follows:

sk = ak + jbk, (8)

where ak is real part of sk and bk is imaginary part
of sk. We assume that cos( 1

2βT 2
s ) ≈ 1 without loss of

generality. Real part of complex signal sk is only used.
Therefore, signal can be modeled as follows:

ak = 2cos(Ak)ak−1 − ak−2 (9)

3 Robust Weighted Least Square Esti-
mator

In this section, the RWLS is used to estimate the
coefficients of the AR model. Transient equation can
be defined as follows,

xk+1 = Fkxk + wk, (10)

where xk , 2cos(Ak), Fk is transient matrix, and wk is
zero mean white Gaussian noise. We define stochastic
signal ãk before defining the measurement equation.
The measured signal contains not only noise uncor-
rupted signal ak but also noise signal. In order to
represent the noise corrupted measurement signal, we
denote as,

ãk = ak + v̄k, (11)
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Figure 3: TFDR experiment on 10C-HFBT: 100m

where ãk is noise corrupted measured signal and v̄k

is zero mean white Gaussian noise. Equation(9) is
rewritten as follows:

ãk + ãk−2 = 2cos(Ak)(ãk−1 − v̄k−1) + (v̄k + v̄k−2)
(12)

and then the measurement equation can be defined as
follows,

yk = [H̃k −∆Hk]xk + vk, (13)

where

yk , ãk + ãk−2, vk , v̄k + v̄k−2,

H̃k , ãk−1, ∆Hk , ṽk−1.

Measurement matrix H̃k is measured from sensor. We
can only obtain measurement matrix H̃k that contains
uncertainty. The RWLS estimator successfully elimi-
nates the scale factor error and the bias error that is
due to the stochastic uncertainty in the measurement
matrix[3]. State-space equation can be obtained as
follows:

xk+1 = Fkxk + wk,

yk = [H̃k −∆Hk]xk + vk.

It is assumed that the stochastic uncertainty ∆Hk is
stationary, and ∆Hk and vk are mutually uncorrelated
in the RWLS.

E[∆HT
k ·∆Hk] , R̄k−1, (14)

E[∆Hk · vk] , 0,

E[∆Hk · wk] , 0.
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Figure 4: Proposed fault estimator experiment on
10C-HFBT: 100m

The equations of RWLS are written as follows,

P−1
k|k = λP−1

k|k−1 + H̃T
k H̃k − R̄k−1, (15)

x̂k|k = (I + Pk|kR̄k)x̂k|k−1 (16)

+ Pk|kH̃T
k (yk − H̃kx̂k|k−1), (17)

Pk+1|k = FkPk|kFT
k , (18)

x̂k+1|k = Fkx̂k|k. (19)

where λ is the forgetting factor and Pk|k is the
Gramian matrix. The existence condition of RWLS
is given by,

P−1
k|k , (Hk)T ΛkHk − (Φk)TRkΦk > 0 (20)

where Λk is the weighting matrix. The AR coefficient,
2cos(Ak), is estimated by the RWLS estimator.

4 Fault Distance Estimation via Resid-
ual

In this section, the fault distance estimation
method via residual of the RWLS is presented. Not
only the RWLS but also all estimator takes some time
to converges at the true state. This is due to the
convergence rate of estimator. If state is suddenly
changed, residual is increased steeply. As the esti-
mated state converges to the true state, residual is
also decreased. We use this characteristics of esti-
mator that residual is increased at the wide variation
point of state to estimate the fault distance. In fault
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distance estimation, state is suddenly changed at the
boundaries of the reference and the reflected signals.
Residual has peak values at the boundaries of the ref-
erence and the reflected signals. Using the peak points
of residual, fault distance is estimated. Residual can
be defined as follows:

rk = yk − ŷk (21)

= (âk + âk−2)− [H̃k −∆Hk]xk.

5 Simulation Results

For the simulation, we use the linear chirp signal. In
simulation, frequency range is 13 ∼ 19.7MHz, time du-
ration is 340nsec, amplitude of the linear chirp signal is
6Vpp, sampling rate is 200Msps and the length of cable
is 100.08m. Velocity of propagation and noise stan-
dard deviation that are extracted from experiments
are 2.502× 108m/s, 0.013 respectively. Measured sig-
nal, true AR coefficients, and AR coefficient estima-
tion are shown in Fig.1. In Fig.1, upper graph rep-
resents the measured signal. The first signal is the
reference signal and the other signals are the reflected
signals. Below graph represents the true AR coeffi-
cient by dotted line and estimation result by solid line.
In Fig.1, true AR coefficient steeply changes at the
boundaries of the reference and reflected signals. AR
coefficient is properly estimated by the RWLS. How-
ever at the boundaries of the reference and reflected
signal, estimation result does not follow the true AR
coefficient. At the boundaries of the reference and re-
flected signals, residual will be steeply increased. This
fact is shown in Fig.2. In Fig.2, below graph repre-
sents the residual. Peak locations of residual is coinci-
dent with the boundaries of the reference and reflected
signals. The fault distance is computed by peak loca-
tions. In this simulation, estimated fault distance is
100.08m.

6 Experimental Results

In this section, the proposed fault distance estima-
tor is compared with the conventional TFDR. Cable is
10C-HFBT 100m. Experimental set consists of arbi-
trary waveform generator(NI-PXI 5422), digital stor-
age oscillator(NI-PXI 5124) and connector. Arbitrary
waveform generater generates the Gaussian enveloped
linear chirp signal that has the same time duration
and frequency range of the linear chirp signal used in
simulation. However, the Gaussian envelope is chirp

signal. This reference signal flows with the conductor
of cable via connector. The reference signal is reflected
at the end of the cable that is open fault. Reflected
signal is measured by digital storage oscilloscope.

In the same noisy environment, fault distance es-
timation is performed. The experimental results of
TFDR and the proposed method are shown in Fig.3
and Fig.4. The fault distance of TFDR is 100.07m
and the proposed method gives the fault distance as
100.08m. From these results, proposed estimator of-
fers reliable estimation results. The Proposed fault
distance estimator reduces the computational burden
of TFDR because the proposed estimator uses the
RWLS and residual instead of cross correlation and
joint time-frequency energy distribution. Therefore
the proposed fault distance estimator is suitable to
real-time implementation.
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