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Abstract: This paper describes a compact genetic algorithm (cGA) with the offspring survival evolutionary strategy. 

The cGA is required less memory and can be easily implemented because of no genetic operators tuning. However, the 

cGA requires a large amount of fitness evaluation to provide acceptable solutions in the problems involving higher-

order building blocks (BBs). So as to reduce the number of fitness evaluation, a higher selection pressure is applied to 

the cGA. Generally, the elitism is used to increase a higher selection pressure. The elitism-based cGA shows the less 

number of the fitness evaluation to provide solutions. However, the elitism may lead to premature convergence as the 

order of BBs becomes higher. In this paper, using offspring survival evolutionary strategy, we propose the cGA which 

is balanced between the selection pressure and genetic diversity. The usefulness of the proposed cGA is verified by 

comparing with the original cGA and the elitism-based cGAs using well known benchmark functions. 
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I. INTRODUCTION 

 

The compact genetic algorithm (cGA) is a part of 

estimation of distribution algorithms (EDA) that 

generate offspring chromosomes using the estimated 

probabilistic model [1]. The cGA is useful in memory-

constrained problem because the cGA memorizes just 

the probability vector, not overall population. The cGA 

mimics the order-one behavior of a simple genetic 

algorithm (sGA) using a constrained memory.[1]  

The original cGA can provide reasonable optimum 

values in the case of easy problems involving the low 

order building blocks (BBs). However the original cGA 

requires a large amount of fitness evaluation to provide 

acceptable solutions in the problems involving higher-

order building blocks (BBs), because the dependency 

between the variables isn’t considered at all in the 

original cGA [2]. Since the real-world problems are 

almost the problems involving the higher order BBs, 

there have been many attempts in order to improve the 

performance of the original cGA.  

The representative way is the use of elitism to increase 

a selection pressure [2]. If a selection pressure increases, 

then the convergence speed of the probability vector 

increases. As a result of the convergence speed 

increment, The elitism-based cGA shows the less 

number of the fitness evaluation to provide solutions.  

However, the elitism may lead to premature 

convergence [3]. If elite chromosome is near the local 

optimum, the elitism-based cGAs provide the low 

quality of solutions. 

 In this paper, we propose the new cGA with offspring 

survival evolutionary strategy (os-ES). The offspring 

survival evolutionary strategy maintains a balance 

between a selection pressure and a genetic diversity. 

The high selection pressure lead the fast speed of 

convergence, and then it leads to fewer number of 

fitness evaluation. On the other hand, the genetic 

diversity leads a lot of random search on the solution 

space, thus it supports to increase the possibility to find 

the global optimum.  

 Section II briefly describes the original cGA and the 

elitism-based cGAs. Section III introduces the proposed 

cGA using os-ES. Section IV shows the simulation 

results on well-known benchmark functions. Section V 

presents the summary of the results. 

II. THE COMPACT GENETIC 

ALGORITHMS (cGA) 

1. The original cGA 

 

Step 1. 

 

 

Step 2. 

 

 

 

Step 3. 

 

Step 4. 

 

 

 

Step 5. 

 

Step 6. 

Initialize probability vector 

For i:=0 to l do 

p[i]=0.5; 

Generate two chromosomes from the probability 

vector.  

achrom := generate(p); 

bchrom := generate(p); 

Let them evaluate and compete. 

Winner, loser : compete(achrom,bchrom); 

Update the probability vector 

For i:=1 to l do  /* n : population size*/ 

    If winner[i]==1 then p[i] := p[i]+1/n; 

    Else p[i] := p[i]-1/n;   

Check if the probability vector has converged 

Go to Step2, if it is not satisfied 

The probability vector represents the final solution 

Fig. 1. Pseudo-code of the original cGA. 
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The cGA represents the population using a probability 

vector as a probability distribution. Fig. 1 describes a 

pseudo-code of the original cGA, where l is the number 

of bits of a chromosome [2].  

 First of all, every bits of the probability vector, p[i], are 

initialized by 0.5. Two chromosomes are generated by 

probability vector p. The p[i] denotes the probability of 

ith bit of a chromosome is 1. Each bit of a chromosome 

is randomly chosen according to probability value in the 

vector. Two chromosomes are competed each other. 

Winner and loser are determined according to fitness 

evaluation. After winner and loser are selected, the 

result of competition should be updated for getting a 

better selection. Each bit of winner is compared with 

each bit of loser, only if that of winner is different from 

that of loser, then update that bit of the probability 

vector. The terminal condition of original cGA is that all 

bits of the probability vector converge into 0 or 1. There 

is no possibility to change all bits although more 

iterations. If the terminal condition is not satisfied, then 

go back to the Step 2.  

In the original cGA, two chromosomes are generated 

by probability vector, so fitness evaluation is needed 

twice in each generation while the probability vector is 

only updated once each generation. As a result of 

generation two chromosome in each generation, the 

total number of the fitness evaluation is increased. If a 

lot of chromosomes are generated, then the genetic 

diversity is incremented and the probability to find the 

global optimum is also increased. However, if the 

improvement of the performance is not proportionate 

with the additional time or cost, we consider the way to 

reduce the number of fitness evaluation in each 

generation, then we can save the evaluation time or cost 

to get solutions.  

2. The elitism-based cGAs 

 

There are two elitism-based cGAs : non-persistent 

elitism-based cGA (ne-cGA) and persistent elitism-

based cGA  (pe-cGA). The pe-cGA uses strong elitism 

scheme whereas the ne-cGA maintains a genetic 

diversity using the length of inheritance. The ne-cGA   

generally shows the better performance than the pe-cGA, 

but it needs one more parameter, the length of 

inheritance. The pseudo-codes of these cGAs are in [2]. 

Commonly the elitism is allowed to copy the best 

chromosome into the next generation. It provides a way 

to increase a selection pressure. If a selection pressure is 

increased, then the survival probability of the better 

chromosomes gets higher. Consequently the better 

chromosome so far survives longer than the original 

cGA. Because the elite chromosome may lead the 

probability vector to converge with its gene information, 

the convergence speed is very fast. Thus compared with 

the original cGA, the elitism-based cGAs make the 

number of fitness evaluation decreased [2].  

Howerver, these elitism-based cGAs have a critical 

weakness, because elitism may lead to premature 

convergence due to the higher selection pressure [4]. 

The selection of pressure of cGA should be proportional 

to the order of BBs [2]. However, in the multimodal 

function case, the number of local optimum also 

increases exponentially with the dimensionality of the 

problem [4]. In other words, elitism in the cGA has too 

high selection pressure. Too high selection pressure 

leads to stall near the local optimums easily.  

 

III. COMPACT GENETIC ALGORITHM 

USING OFFSPRING SURVIVAL 

EVOLUTIONARY STRATEGY 
 

This section describes the offspring survival compact 

GA (os-cGA) using the offspring survival evolution 

strategy (os-ES). 

 The os-ES is similar with a (1, λ) evolutionary strategy 

(ES), where λ equals 1. However, the os-ES is strictly 

differ from (1,1)-ES. In fact, (1,1)-ES cannot be 

“evolutionary strategy”. If λ equals 1, an offspring 

always becomes a parent without any competition and 

we can’t update information for evolution to get a better 

offspring. On the other hand, the os-ES is composed of 

a parent, an offspring and a memory for writing results 

of the competition between a parent and an offspring.  

If a parent and an offspring are competed each other, 

then winner and loser are determined from fitness 

values. Winner leaves the information in the memory 

for evolution to make better chromosomes.  After the 

information update, a parent always dies and an 

offspring becomes a new parent. New offspring is 

generated by both a new parent and the information of 

the memory or only the information of the memory. In 

the os-cGA, the offspring is only generated by the 

information of memory. In next generation, new parent 

and new offspring are competed each other, winner 

leaves the information again. In the cGA, there is a 

memory called a probability vector to determine how to 

generate an offspring. Therefore, we can apply the os-

ES to the cGA. 

There is main objective to apply the os-ES to the cGA : 

the balance between the convergence speed using less 

number of the fitness evaluation and genetic diversity 

for guarantee to find global optimum. A pseudo-code of 

the proposed cGA is shown in Fig. 2. 

 In the initial generation, a parent and an offspring 

chromosome are generated by initial probability value 

0.5. Parent and offspring are competed each other. 

Winner and loser are determined from the competition 

result. Probability vector update is done by winner’s 

gene information. In second generation, current parent 

is eliminated and offspring becomes parent. And then 

just offspring chromosome is generated by probability 

vector. Winner and loser are determined by the result of 

competition and repeat until all the probability vector 

converges to 0 or 1.  

Main difference from the original cGA, elitism-based 

cGA and os-cGA are following: both winner and loser 
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are eliminated in the original cGA, only loser is 

eliminated in elitism-based cGA and only parent 

regardless of winner or loser is eliminated in os-cGA. In 

the os-cGA, each chromosome at least competes twice 

with different chromosomes during two generations. As 

an offspring, a chromosome leaves the information 

through the competition with its parent, and then as a 

parent, a chromosome leaves the information through 

the competition with new offspring generated by a 

probability vector, resulting in bigger selection pressure 

than the original cGA. Therefore, the number of fitness 

evaluation can be reduced than the original cGA. 

Moreover, compared with the elitism-based cGAs, the 

os-cGA memorizes only an offspring regardless of 

winner or loser. Thus, the genetic diversity is wider than 

the elitism-based cGA and the quality of solutions are 

higher than the elitism-based cGA.   

When a parent and an offspring are identical 

chromosomes, there is no probability vector update, and 

when a parent and an offspring have same fitness value 

but different chromosome, a parent always picked up as 

a winner. In the os-cGA, an offspring always becomes a 

parent at next generation, so the probability vector is 

stalled by two probability values. This problem is called 

as probability vector stall problem. We should apply two 

modifications to avoid probability vector stall problem. 

One is augmented scheme [5]. When one bit of the 

probability vector is not converged, the augmented 

scheme checks two cases and then converge that bit to 0 

or 1. The other is the purification in Fig.2. Picking up an 

offspring as the random chromosome in the solution 

space, the purification scheme solves the stall problem.  

IV. NUMERICAL EXPERIMENTS 

 

In this section, we show the effect of this proposed os-

cGA using some well-known 6 benchmark functions [4]. 

It is compared with the original cGA, pe-cGA, and ne-

cGA. Test functions are given in Table I. D denotes the 

dimensionality of the test functions and equals 10. 

Functions f1~f3 are unimodal continuous functions, and 

functions f4~f6 are multimodal functions. The brief 

descriptions of all the test functions can be offered from 

the original references [2] [4] . The fitness values and 

the number of function evaluations are obtained by 100 

independent runs. The input value range of f1~f4 is -

5.12~5.11 and that of f5~f6 is -20.48~20.47. The 

population size is fixed by 200 that the other cGA also 

show the reasonable performance. Based on the 

literature [2], the length of inheritance  is defined as 

0.1n where n is the population size. Figure 4 shows the 

average best fitness curves of the test functions.  

The figure of merit is considered as the intersection area 

below the elitism-based cGA and the original cGA and 

above the os-cGA. From Fig. 3(a), (b), (d), (e) shows 

the good performance of the proposed os-cGA because 

of the large figure of merit. The ne-cGA and pe-cGA 

show the fast converge speed, but they are easily in the 

local scope. While the original cGA shows usually 

better performance than the proposed os-cGA at last, it 

is necessary to evaluate fitness functions so many times.      

The os-cGA shows that converge speed is as fast as 

elitism-based cGA and the performance of finding the 

global optimum is as exact as the original cGA in the 

many cases. The figure of merit of os-cGA may be 

reduced, because these problems are well suitable for 

the elitism-based cGA from Fig. 3(c) and (f) [2]. 

However, in the most case, the os-cGA shows the good 

performance. 

 The result shows the os-cGA makes a balance between 

the selection pressure and the genetic diversity. The os-

cGA shows higher selection pressure than the original 

cGA and higher genetic diversity than the elitism-based 

cGAs. As previously mentioned, by memorizing an 

offspring chromosome and by competing twice, the os-

cGA has a higher selection pressure than the original 

cGA. Moreover, by memorizing an offspring 

 

Step 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3. 

/* Other steps is same as the original cGA*/ 

Generate one chromosome from  

the probability vector. Offspring becomes parent. 

If the first generation then 

pchrom := generate(p); 

else then 

  pchrom := ochrom; 

ochrom:=generate(p); 

 

/*Augmented scheme*/ 

If one bit of probability vector only doesn’t 

converge, an offspring is generated by the other 

part of a parent. Update the remaining bit of the 

probability vector according to the competition 

between two.  

 

/*Purification*/ 

If a parent and an offspring have a same fitness 

value, then  

θ++; 

If  θ>= 0.05*n, then 

/* with initial probability vector 0.5*/ 

ochrom := regenerate(p);  

θ=0; 

else  

    θ=0; 

Let them evaluate and compete. 

Winner, loser : compete(pchrom,ochrom); 

Fig. 2. Pseudo-code of the proposed os- cGA. 
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chromosome regardless of winner or loser, the os-cGA 

has a higher genetic diversity than the elitism-based 

cGA. 

  
(a)                                            (b) 

  
(c)                                            (d) 

  
(e)                                            (f) 

Fig. 3. The convergence property of the cGAs for the test functions. Population size n = 200. All results are averaged 
over 100 runs. For the ne-cGA,  = 0.1n. (a) For the test function

1f . (b) For the test function
2f . (c) For the test 

function
3f . (d) For the test function

4f . (e) For the test function
5f . (f) For the test function

6f . 

 

V. CONCLUSION 

 In this paper, we showed the novel cGA using the 

offspring survival evolution strategy. The conventional 

cGAs have a difficulty to find the global optimum in the 

case of higher order problem with restricted time or cost. 

Simulation studies showed that the performance of the 

proposed os-cGA using os-ES was better than the other 

cGAs in terms of both quality of solutions and the 

convergence speed in the problems involving the high 

order BBs. The os-ES provided a balance between a 

selection pressure and genetic diversity through 

offspring survival, thus it was good evolutionary 

strategy to apply to the cGAs. 

 We will apply the proposed scheme to real world 

optimization problems and other type of cGAs as a 

future work.  
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