
A Novel Compact Genetic Algorithm using Offspring Survival

Evolutionary Strategy

 Joon-Hong Seok, Tae-Yong Choi and Ju-Jang Lee

Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology (KAIST)

Tel: 82-42-350-8032; Fax: 82-42-350-5432

Email: seokjh@kaist.ac.kr

Abstract: This paper describes a compact genetic algorithm (cGA) with the offspring survival evolutionary strategy.

The cGA is required less memory and can be easily implemented because of no genetic operators tuning. However, the

cGA requires a large amount of fitness evaluation to provide acceptable solutions in the problems involving higher-

order building blocks (BBs). So as to reduce the number of fitness evaluation, a higher selection pressure is applied to

the cGA. Generally, the elitism is used to increase a higher selection pressure. The elitism-based cGA shows the less

number of the fitness evaluation to provide solutions. However, the elitism may lead to premature convergence as the

order of BBs becomes higher. In this paper, using offspring survival evolutionary strategy, we propose the cGA which

is balanced between the selection pressure and genetic diversity. The usefulness of the proposed cGA is verified by

comparing with the original cGA and the elitism-based cGAs using well known benchmark functions.

Keywords: Compact genetic algorithms, Offspring survival evolutionary strategy.

I. INTRODUCTION

The compact genetic algorithm (cGA) is a part of

estimation of distribution algorithms (EDA) that

generate offspring chromosomes using the estimated

probabilistic model [1]. The cGA is useful in memory-

constrained problem because the cGA memorizes just

the probability vector, not overall population. The cGA

mimics the order-one behavior of a simple genetic

algorithm (sGA) using a constrained memory.[1]

The original cGA can provide reasonable optimum

values in the case of easy problems involving the low

order building blocks (BBs). However the original cGA

requires a large amount of fitness evaluation to provide

acceptable solutions in the problems involving higher-

order building blocks (BBs), because the dependency

between the variables isn’t considered at all in the

original cGA [2]. Since the real-world problems are

almost the problems involving the higher order BBs,

there have been many attempts in order to improve the

performance of the original cGA.

The representative way is the use of elitism to increase

a selection pressure [2]. If a selection pressure increases,

then the convergence speed of the probability vector

increases. As a result of the convergence speed

increment, The elitism-based cGA shows the less

number of the fitness evaluation to provide solutions.

However, the elitism may lead to premature

convergence [3]. If elite chromosome is near the local

optimum, the elitism-based cGAs provide the low

quality of solutions.

 In this paper, we propose the new cGA with offspring

survival evolutionary strategy (os-ES). The offspring

survival evolutionary strategy maintains a balance

between a selection pressure and a genetic diversity.

The high selection pressure lead the fast speed of

convergence, and then it leads to fewer number of

fitness evaluation. On the other hand, the genetic

diversity leads a lot of random search on the solution

space, thus it supports to increase the possibility to find

the global optimum.

 Section II briefly describes the original cGA and the

elitism-based cGAs. Section III introduces the proposed

cGA using os-ES. Section IV shows the simulation

results on well-known benchmark functions. Section V

presents the summary of the results.

II. THE COMPACT GENETIC

ALGORITHMS (cGA)

1. The original cGA

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Initialize probability vector

For i:=0 to l do

p[i]=0.5;

Generate two chromosomes from the probability

vector.

achrom := generate(p);

bchrom := generate(p);

Let them evaluate and compete.

Winner, loser : compete(achrom,bchrom);

Update the probability vector

For i:=1 to l do /* n : population size*/

 If winner[i]==1 then p[i] := p[i]+1/n;

 Else p[i] := p[i]-1/n;

Check if the probability vector has converged

Go to Step2, if it is not satisfied

The probability vector represents the final solution

Fig. 1. Pseudo-code of the original cGA.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 309

The cGA represents the population using a probability

vector as a probability distribution. Fig. 1 describes a

pseudo-code of the original cGA, where l is the number

of bits of a chromosome [2].

 First of all, every bits of the probability vector, p[i], are

initialized by 0.5. Two chromosomes are generated by

probability vector p. The p[i] denotes the probability of

ith bit of a chromosome is 1. Each bit of a chromosome

is randomly chosen according to probability value in the

vector. Two chromosomes are competed each other.

Winner and loser are determined according to fitness

evaluation. After winner and loser are selected, the

result of competition should be updated for getting a

better selection. Each bit of winner is compared with

each bit of loser, only if that of winner is different from

that of loser, then update that bit of the probability

vector. The terminal condition of original cGA is that all

bits of the probability vector converge into 0 or 1. There

is no possibility to change all bits although more

iterations. If the terminal condition is not satisfied, then

go back to the Step 2.

In the original cGA, two chromosomes are generated

by probability vector, so fitness evaluation is needed

twice in each generation while the probability vector is

only updated once each generation. As a result of

generation two chromosome in each generation, the

total number of the fitness evaluation is increased. If a

lot of chromosomes are generated, then the genetic

diversity is incremented and the probability to find the

global optimum is also increased. However, if the

improvement of the performance is not proportionate

with the additional time or cost, we consider the way to

reduce the number of fitness evaluation in each

generation, then we can save the evaluation time or cost

to get solutions.

2. The elitism-based cGAs

There are two elitism-based cGAs : non-persistent

elitism-based cGA (ne-cGA) and persistent elitism-

based cGA (pe-cGA). The pe-cGA uses strong elitism

scheme whereas the ne-cGA maintains a genetic

diversity using the length of inheritance. The ne-cGA

generally shows the better performance than the pe-cGA,

but it needs one more parameter, the length of

inheritance. The pseudo-codes of these cGAs are in [2].

Commonly the elitism is allowed to copy the best

chromosome into the next generation. It provides a way

to increase a selection pressure. If a selection pressure is

increased, then the survival probability of the better

chromosomes gets higher. Consequently the better

chromosome so far survives longer than the original

cGA. Because the elite chromosome may lead the

probability vector to converge with its gene information,

the convergence speed is very fast. Thus compared with

the original cGA, the elitism-based cGAs make the

number of fitness evaluation decreased [2].

Howerver, these elitism-based cGAs have a critical

weakness, because elitism may lead to premature

convergence due to the higher selection pressure [4].

The selection of pressure of cGA should be proportional

to the order of BBs [2]. However, in the multimodal

function case, the number of local optimum also

increases exponentially with the dimensionality of the

problem [4]. In other words, elitism in the cGA has too

high selection pressure. Too high selection pressure

leads to stall near the local optimums easily.

III. COMPACT GENETIC ALGORITHM

USING OFFSPRING SURVIVAL

EVOLUTIONARY STRATEGY

This section describes the offspring survival compact

GA (os-cGA) using the offspring survival evolution

strategy (os-ES).

 The os-ES is similar with a (1, λ) evolutionary strategy

(ES), where λ equals 1. However, the os-ES is strictly

differ from (1,1)-ES. In fact, (1,1)-ES cannot be

“evolutionary strategy”. If λ equals 1, an offspring

always becomes a parent without any competition and

we can’t update information for evolution to get a better

offspring. On the other hand, the os-ES is composed of

a parent, an offspring and a memory for writing results

of the competition between a parent and an offspring.

If a parent and an offspring are competed each other,

then winner and loser are determined from fitness

values. Winner leaves the information in the memory

for evolution to make better chromosomes. After the

information update, a parent always dies and an

offspring becomes a new parent. New offspring is

generated by both a new parent and the information of

the memory or only the information of the memory. In

the os-cGA, the offspring is only generated by the

information of memory. In next generation, new parent

and new offspring are competed each other, winner

leaves the information again. In the cGA, there is a

memory called a probability vector to determine how to

generate an offspring. Therefore, we can apply the os-

ES to the cGA.

There is main objective to apply the os-ES to the cGA :

the balance between the convergence speed using less

number of the fitness evaluation and genetic diversity

for guarantee to find global optimum. A pseudo-code of

the proposed cGA is shown in Fig. 2.

 In the initial generation, a parent and an offspring

chromosome are generated by initial probability value

0.5. Parent and offspring are competed each other.

Winner and loser are determined from the competition

result. Probability vector update is done by winner’s

gene information. In second generation, current parent

is eliminated and offspring becomes parent. And then

just offspring chromosome is generated by probability

vector. Winner and loser are determined by the result of

competition and repeat until all the probability vector

converges to 0 or 1.

Main difference from the original cGA, elitism-based

cGA and os-cGA are following: both winner and loser

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 310

are eliminated in the original cGA, only loser is

eliminated in elitism-based cGA and only parent

regardless of winner or loser is eliminated in os-cGA. In

the os-cGA, each chromosome at least competes twice

with different chromosomes during two generations. As

an offspring, a chromosome leaves the information

through the competition with its parent, and then as a

parent, a chromosome leaves the information through

the competition with new offspring generated by a

probability vector, resulting in bigger selection pressure

than the original cGA. Therefore, the number of fitness

evaluation can be reduced than the original cGA.

Moreover, compared with the elitism-based cGAs, the

os-cGA memorizes only an offspring regardless of

winner or loser. Thus, the genetic diversity is wider than

the elitism-based cGA and the quality of solutions are

higher than the elitism-based cGA.

When a parent and an offspring are identical

chromosomes, there is no probability vector update, and

when a parent and an offspring have same fitness value

but different chromosome, a parent always picked up as

a winner. In the os-cGA, an offspring always becomes a

parent at next generation, so the probability vector is

stalled by two probability values. This problem is called

as probability vector stall problem. We should apply two

modifications to avoid probability vector stall problem.

One is augmented scheme [5]. When one bit of the

probability vector is not converged, the augmented

scheme checks two cases and then converge that bit to 0

or 1. The other is the purification in Fig.2. Picking up an

offspring as the random chromosome in the solution

space, the purification scheme solves the stall problem.

IV. NUMERICAL EXPERIMENTS

In this section, we show the effect of this proposed os-

cGA using some well-known 6 benchmark functions [4].

It is compared with the original cGA, pe-cGA, and ne-

cGA. Test functions are given in Table I. D denotes the

dimensionality of the test functions and equals 10.

Functions f1~f3 are unimodal continuous functions, and

functions f4~f6 are multimodal functions. The brief

descriptions of all the test functions can be offered from

the original references [2] [4] . The fitness values and

the number of function evaluations are obtained by 100

independent runs. The input value range of f1~f4 is -

5.12~5.11 and that of f5~f6 is -20.48~20.47. The

population size is fixed by 200 that the other cGA also

show the reasonable performance. Based on the

literature [2], the length of inheritance is defined as

0.1n where n is the population size. Figure 4 shows the

average best fitness curves of the test functions.

The figure of merit is considered as the intersection area

below the elitism-based cGA and the original cGA and

above the os-cGA. From Fig. 3(a), (b), (d), (e) shows

the good performance of the proposed os-cGA because

of the large figure of merit. The ne-cGA and pe-cGA

show the fast converge speed, but they are easily in the

local scope. While the original cGA shows usually

better performance than the proposed os-cGA at last, it

is necessary to evaluate fitness functions so many times.

The os-cGA shows that converge speed is as fast as

elitism-based cGA and the performance of finding the

global optimum is as exact as the original cGA in the

many cases. The figure of merit of os-cGA may be

reduced, because these problems are well suitable for

the elitism-based cGA from Fig. 3(c) and (f) [2].

However, in the most case, the os-cGA shows the good

performance.

 The result shows the os-cGA makes a balance between

the selection pressure and the genetic diversity. The os-

cGA shows higher selection pressure than the original

cGA and higher genetic diversity than the elitism-based

cGAs. As previously mentioned, by memorizing an

offspring chromosome and by competing twice, the os-

cGA has a higher selection pressure than the original

cGA. Moreover, by memorizing an offspring

Step 2.

Step 3.

/* Other steps is same as the original cGA*/

Generate one chromosome from

the probability vector. Offspring becomes parent.

If the first generation then

pchrom := generate(p);

else then

 pchrom := ochrom;

ochrom:=generate(p);

/*Augmented scheme*/

If one bit of probability vector only doesn’t

converge, an offspring is generated by the other

part of a parent. Update the remaining bit of the

probability vector according to the competition

between two.

/*Purification*/

If a parent and an offspring have a same fitness

value, then

θ++;

If θ>= 0.05*n, then

/* with initial probability vector 0.5*/

ochrom := regenerate(p);

θ=0;

else

 θ=0;

Let them evaluate and compete.

Winner, loser : compete(pchrom,ochrom);

Fig. 2. Pseudo-code of the proposed os- cGA.

TABLE I

Test function

D

i
ixxf

1

2

1)(

D

i
i

D

i
i xxxf

11
2)(

}1,{max)(3 Dixxf ii

D

i
ii xxxf

1
4)sin()(

]0.1))(50([sin)()(10/1

1

224/1

1

2

5

D

i
i

D

i
i xxxf

))(001.00.1/()(sin)(
1

2

1

22

6

D

i
i

D

i
i xxxf

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 311

chromosome regardless of winner or loser, the os-cGA

has a higher genetic diversity than the elitism-based

cGA.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The convergence property of the cGAs for the test functions. Population size n = 200. All results are averaged
over 100 runs. For the ne-cGA, = 0.1n. (a) For the test function

1f . (b) For the test function
2f . (c) For the test

function
3f . (d) For the test function

4f . (e) For the test function
5f . (f) For the test function

6f .

V. CONCLUSION

 In this paper, we showed the novel cGA using the

offspring survival evolution strategy. The conventional

cGAs have a difficulty to find the global optimum in the

case of higher order problem with restricted time or cost.

Simulation studies showed that the performance of the

proposed os-cGA using os-ES was better than the other

cGAs in terms of both quality of solutions and the

convergence speed in the problems involving the high

order BBs. The os-ES provided a balance between a

selection pressure and genetic diversity through

offspring survival, thus it was good evolutionary

strategy to apply to the cGAs.

 We will apply the proposed scheme to real world

optimization problems and other type of cGAs as a

future work.

References

[1] G. Harik, F. G. Lobo, and D. E. Goldberg. "The

Compact Genetic Algorithm." IEEE. Trans. Evol.

Comput. vol.3, pp. 287-297, Nov. 1999.

[2] C. W Ahn and R. S. Ramakrishna. "Elitism-Based

Compact Genetic Algorithms." IEEE Trans. Evol.

Comput., vol. 7, no.4, pp. 367-385 , Aug. 2003.

[3] G. Rudolph,“Self-adaptive mutations may lead to

premature convergence,”IEEE Trans. Evol. Comput.,

vol.5, pp. 410-414, Aug. 2001.

[4] J. Y Lee, S. M Im and J.J Lee, “Bayesian Network-

based Non-parametric Compact Genetic Algorithm”,

IEEE International Conference on Industrial

Informatics, pp. 359-364, Jul. 2008.

[5] C. W Ahn and R. S. Ramakrishna, “Augmented

Compact Genetic Algorithm”, Lecture Notes in

Computer Science, 2004 – Springer, pp. 560-565, 2004

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 312

