
Control of Damping with Reinforcement Learning 

for Power-assisted Positioning Task 
 

 Tetsuya Morizono
1
 and Masatake Higashi

2
 

1
Fukuoka Institute of Technology, 3-30-1, Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan 

 morizono@fit.ac.jp 
2
Toyota Technological Institute, Tempaku-ku, Nagoya, Japan 

 

 

Abstract: Finding an appropriate reference of kinetic characteristic is a major problem of an impedance-controlled 
power-assist robot. In this paper, autonomous adjustment of damping (viscosity) based on subjective operational feeling 

of an operator is discussed. For autonomous adjustment, reinforcement learning is utilized. For adaptation of the robot 

to a positioning task including multi goal positions, a method for inference of the goal position is developed. 

Experimental results show that the method developed in this paper is capable of adjusting viscosity of the robot so that 

dissipation of kinetic energy of the robot assists positioning of an operator at the goal position. 
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I. INTRODUCTION 

When a power-assist robot is controlled by the 

impedance control, a major problem is how to find a 

reference of mechanical impedance appropriate for 

assistance of an operator. Many studies prefer variable 

impedance control where control parameters (desired 

mass, viscous coefficient and/or stiffness) are variable 

(for example [1]), and operational force and even 

stiffness of the operator’s arm was used as reference 

signals for adjustment of the control parameters [2][3]. 

In contrast with those studies, Yamada et al. 

proposed a scheme for adjustment of control parameters 

named “Field Impedance Equalizer (FIE)” [4]. The 

study assumed a repetitive power-assisted positioning 

task, and the proposed scheme aimed at tune up of the 

parameters in interaction between an operator and a 

power-assist robot. Experimental results showed that the 

viscous coefficient could be adjusted so that an operator 

obtained a good subjective operational feeling of a robot. 

However, autonomous adjustment of the coefficient has 

not been well studied. Therefore, the authors have 

proposed a method of autonomous adjustment of the 

viscous coefficient based on FIE [5]. 

The previous study assumes that the operational 

distance of a positioning task is constant. However, 

many tasks existing in factories (an assembly task of 

automobiles, for example) include different goal 

positions between operations, and the goal position is 

often determined by a worker in real time. To extend the 

previous studies to the case where the operational 

distance is different between operations and the distance 

is determined in real time, this paper proposes EFDA 

(Enhanced Field Damping Adjuster). 

II. FIE AND PARAMETER ADJUSTMENT 

positioning target

operatorhandle

robot

initial position  

Fig. 1 A 1-DOF power-assist robot 

The study in this paper considers a repetitive 

positioning task with a 1-DOF power-assist robot, as 

shown in Fig. 1. One task includes repetition of 

operations from the initial position to the goal position. 

An operation is one-way; after the robot is positioned at 

the goal position, return of the robot to the initial 

position is automatic. 

If the goal position is fixed throughout the task, the 

operating distance is fixed. In this case, the distance can 

be divided into several sections with constant lengths. 

The previous study by Yamada et al. [4] defined each of 

the sections as a “field”. Impedance parameters of mass, 

viscous coefficient and stiffness were defined dependent 

on the field, and tuned (equalized) based on operational 

feeling of the robot. This is the framework of FIE. 

Based on FIE, the authors proposed a method of 

autonomous adjustment. The method adjusted the 

viscous coefficient, and reinforcement learning was 

applied for autonomous adjustment. In the method, the 
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state and the action of the agent was defined as the field 

number and the value of the viscous coefficient, 

respectively. The action value functions ( )idiQ ,  of all 

the fields were updated by Q-learning, here i and di 

denote the field number and the value of the viscous 

coefficient at the field i (the field with the number i). 

 

Operational distance 
field i … … 

Operational force at (N+1)-th operation 

Operational force at N-th operation 

Operational 

force 

 
Fig. 2 Profiles (operational force) 

If the reward ri is calculated based on evaluation of 

operational feeling, ( )idiQ ,  reflects the evaluation 

through learning, here ri is the reward when the robot 

passes the field i. In the previous study [5], the 

evaluation was measured by the degree of convergence 

between the profiles at the field i obtained in the N-th 

and (N+1)-th operations. Here, the profile means the 

plot of the operational force or the velocity of the robot 

where the operational distance of the robot is assigned 

to the horizontal axis, as explained in Fig. 2. The degree 

of convergence at the field i was calculated by the area 

formed by the plots and the boundary lines of the field i, 

and a smaller area provided a larger reward at the field i 

of (N+1)-th operation. This evaluation was based on the 

assumption that the profile was convergent when a good 

operational feeling is obtained, and the assumption was 

based on an experimental observation in the study by 

Yamada et al. [4] 

III. EXTENTION TO EFDA 

Operational feeling from the initial position through 

a goal position is determined by a sequence of viscous 

coefficients from the first field (the field where the 

initial position locates) through the goal field (the field 

where the goal position locates). If we consider 

extension of the previous study described in the 

previous section to the case where the number of goal 

positions which can be selected by an operator is n 

(n>1), n sequences of viscous coefficients are required 

and should be learned. In addition, if selection of a goal 

position is made by an operator in real time, a function 

of inferring the goal position is necessary, because the 

goal position cannot be told to the robot in advance 

before an operation. 

To the above problems, the study in this paper 

considers the extension of the previous study, referred to 

as EFDA. 

1. Sequence of viscous coefficient 

When the goal field is the field j, the sequence of 

viscous coefficients is defined as 

 

{ }jjjijj dddD ,,,,1 ⋯⋯= ,   (2) 

 

where ji ,,1 ⋯=  denotes the field number and 

Jj ,,2 ⋯= . The field J denotes the field where the 

farthest goal position from the initial position locates. dji 

denotes the viscous coefficient chosen by an agent at the 

field i when the goal field is the field j. 

2. Inference of the goal field 

Accurate inference of the goal position is a difficult 

problem in general. However, adjustment of viscous 

coefficients is “field-dependent” in the study in this 

paper. Therefore, the adjustment can be performed if the 

goal field is inferred. Although several types of 

algorithms (using Hidden Markov Model, for example) 

can be considered for inference, this paper considers a 

simple method. 

At the initial stage, an operator is asked to perform 

one operations of positioning to each of all the fields 

used in a positioning task. By the operations, an initial 

profile of velocity is obtained for each field, and the 

robot memorizes the profiles. 

In each operation of positioning, the profile of the 

velocity for the current operation is updated with the 

measured velocity when the robot enters a new field. 

The entrance also cues comparison between the updated 

profile and the profiles memorized in the robot. 

Integrations of absolute errors between the profiles are 

calculated, and the field of which profile in the robot 

gives the smallest value of integration is treated as the 

goal field at the timing of the entrance. The comparison 

is repeated until the robot is stopped at the goal field. 

After each operation, the profile in the robot is 

updated. If the robot is stopped at the field k, the profile 

of the goal field k is replaced with the profile obtained 

in the current operation. This replacement is important 

because it is thought that the profile varies according to 

improvement of skill and fatigue of an operator. 

3. Choice of viscous coefficient 

If the inferred goal field is the field j when the robot 

enters the field i, the agent chooses dji in Dj for control 
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of operational feeling. Furthermore, if the inferred goal 

field in the next field is the field j’, the agent changes 

choice of the sequence to Dj’ and select dj’(i+1). 

4. Update of the action value function 

We assume that the goal field of an operation is the 

field k, and the inferred goal fields from the fields 1 

through k includes an inference error at the field i. If the 

incorrect inference is the field k’, the selection of the 

viscous coefficients for this operation is {dk1, ⋯ , dk’i, 

⋯ , dkk}. In this case, the action value function of not 

( )kidiQ ,  but ( )ikdiQ ',  is updated for the field i. 

This update is natural in the context of the theory of 

reinforcement learning. However, the authors think that 

an inference error affects learning process. In the above 

example, if the inferred goal field is correct in the field i 

at the next operation to the goal field k, dki which is not 

learned in the previous operation to the goal field k is 

selected for the field i. This is a problem needed to be 

discussed. In this paper, the result of experimental 

investigation is reported in the next section. 

IV. EXPERIMENT 

1. Setup 

Experimental investigation was carried out with the 

experimental setup as shown in Fig. 1 and some 

operators. The length of a field was 0.1[m] and seven 

fields (the fields 1 through 7) were prepared. The task 

included six goal positions located in the range of 0.2 to 

0.7[m] from the initial position at the interval of 0.1[m]. 

In each of operation, one of goal positions was 

randomly indicated to the operator by a positioning 

target. Here, the target position was not told to the robot. 

The desired mass and stiffness of the robot were 

fixed to 10[kg] and 0[N/m], respectively. The desired 

viscous coefficients prepared for choice by the agent 

were nine values, ranging from 10 to 50[Ns/m] at the 

interval of 5[Ns/m]. Adjustment was not applied to the 

field 1 (including the initial position) and the viscous 

coefficient of the field (namely, d21, d31, ⋯ , d71) was 

fixed to 10[Ns/m], which was the minimum value of the 

choice. The value was determined based on a well-

known result of power-assist devices that a smaller 

viscous coefficient is preferable in the initial position of 

an operation. 

2. Task 

An operator was asked to position the robot at the 

goal position indicated by the target. After each 

operation, the operator was also asked to judge whether 

a preferable operational feeling was obtained or not. If 

the operator thought that the operational feeling was 

preferable, adjustment of viscous coefficients to the goal 

position was finished, and the goal position was 

excluded from the indication after the next operation. 

The operation and the judgment described above 

were repeated until operational feelings to all the goal 

positions became preferable for the operator. 

3. Results 

Table 1 shows the viscous coefficients obtained by 

one of operators after adjustment. Note again that the 

field 1 was not included in adjustment. From Table 1, 

two observations are made. The first is that the values of 

viscous coefficients around the goal field are larger than 

those at the field 1. This observation suggests that 

dissipation of kinetic energy by larger viscosity around 

the goal field assists positioning of the operator, and the 

observation is similar to that reported in other studies of 

power-assist devices. The second observation is that the 

sequences of viscous coefficients are categorized into 

two groups: the sequences to the fields 2 and 3, and 

those to the fields 4 through 7. In the former group, the 

value of viscous coefficient at the field 2 is 35[Ns/m], 

whereas its values are 10 and 15[Ns/m] in the latter 

group. 

 

Table 1 Viscous coefficients after adjustment 

field goal 

field 1 2 3 4 5 6 7 

2 10 35 - - - - - 

3 10 35 25 - - - - 

4 10 10 20 35 - - - 

5 10 10 20 25 20 - - 

6 10 15 20 25 20 25 - 

7 10 15 15 20 25 25 25 

 

For further consideration of the second observation, 

correct rates of inference are shown in Table 2. It is 

observed that high correct rates are marked around the 

goal field, whereas moderate rates are observed in the 

field far from the goal field. Especially, the rates at the 

field 2 when the goal fields are the fields 4 through 7 

are in the range of 20.0 to 66.7[%]. This indicates that 

inaccuracy of inference at the field 2 induces random 

choice of viscous coefficient, and d42, d52, d62 and d72 

are equally learned to some extent. 
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Table 2 Correct rates of inference [%] 

field goal 

field 1 2 3 4 5 6 7 

2 75.0 100 - - - - - 

3 50.0 66.7 100 - - - - 

4 26.7 66.7 80.0 93.3 - - - 

5 20.0 20.0 80.0 100 100 - - 

6 11.1 22.2 44.4 55.6 77.8 100 - 

7 22.2 55.6 77.8 55.6 77.8 100 100 

 

The above consideration suggests that inaccuracy of 

inference has an influence on learning process. The 

authors think that the inaccuracy can be taken into 

account for improved design of the agent, and the 

design is one of future work. 

4. Evaluation of operational feeling 

For further study of EFDA in future, the authors 

attempted to evaluate operational feeling from a 

viewpoint of energy. The index for evaluation was 

12 EEJ = , where E1 denotes the energy which an 

operator exerts on the robot in one operation, and E2 

denotes the energy dissipated by the operator in the 

operation. The energy is calculated by integration of the 

product of operational force and velocity throughout the 

operation. Here, the velocity is always positive because 

one-way operation is assumed in this paper. Therefore, 

E1 and E2 are obtained by the integrations where the 

operational force is positive and negative, respectively. 
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Fig. 3 Transitions of the index J 

Figure 3 shows the transitions of J, where the values 

of 1.0×j  denote the goal position located in the field j. 

The horizontal axis denotes the number of operations to 

each goal position. The plots shows that J for all the 

goal positions become small values (under 3105 −× ) at 

finish of adjustment. However, the plots also indicate 

that process to finish of adjustment is different between 

the positions. These observations suggest possibility of 

measuring preference to operational feeling by energy. 

However, necessity of another index is also suggested 

for evaluation of the adjustment process. 

V. CONCLUSION 

This paper discussed autonomous adjustment of 

viscosity of a power-assisted positioning task from a 

viewpoint of operational feeling. Under the assumption 

that an operator selected one of multi goal positions in 

real time for an operation, EFDA (Enhanced Field 

Damping Adjuster) was proposed for realization of 

preferable operational feelings to all the goal positions, 

and a function of inferring a goal position and an 

adjuster using reinforcement learning were developed. 

Experimental results showed that adjustment of 

viscosity was processed so that dissipation of kinetic 

energy of the robot assisted positioning at the goal 

position, and also that inaccurate inference of goal 

positions affected learning process. Considering an 

improved design of the agent is one of future work. 
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