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Abstract: We developed a system to estimate physiological activities of foods from protein expression levels using 
artificial neural networks (ANNs). Since protein expression levels and physiological activities are measured in 
multiple times for a constituent, we employ a simple regression analysis to find appropriate correspondence 
between physiological activities and protein expression levels. The range of physiological activities are from 0 to 
Z (Z >1), they cannot directly use training signals of ANNs because the output of a neuron is limited from zero to 
one. To tackle this problem, we introduce two parameters K and l to the activation function of our system like as 
ሻ࢞ሺࢌ) ൌ ࡷ

૚ାࢋష࢞࢒
). Our system is based on three-layer ANN and back-propagation algorithm is employed as training 

algorithm. Experimental results showed that our system can estimate more accurate than that of ANNs with 
normalized training samples for antioxidant stress activity. 
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I. INTRODUCTION  

Since the third function of foods which is effect to 
physiological activities for human is useful to keep 
health and prevent diseases, many people pay attention 
to some foods that have relatively large effect [1]. A 
way to evaluate the function of foods is direct 
measurement of their physiological activities. However, 
it is difficult because there are many kinds of foods in 
the world, and their physiological activities are also 
different in seasons and places. The other way to 
evaluate the function of foods is estimation from their 
constituents, but it is also difficult because it needs to 
be clear the complicated interactions between these 
constituents and human. So a new method to estimate 
physiological activities of foods is required. 

Some researchers proposed methods to estimate 
physiological activities by artificial neural networks 
(ANNs) [2]-[5]. For example, Tsukuda et al. [2] 
showed that artificial neural networks (ANNs) could 
achieve good accuracy to estimate some physiological 
activities. In this research, ANNs train the relations 
between the protein expression levels and the 
physiological activities when constituents of foods are 
poured for human cells. After training process, the 
protein expression levels by extraction of foods are 
presented to ANNs.  

ANNs need many appropriate training samples to 

make a better model equation. Protein expression 
levels and physiological activities are measured in 
multiple times for a constituent. However, previous 
works took an average of measured values, then these 
average values were composed to a training sample. 
This operation decreases the total number of training 
samples. To solve is problem, we utilize all measured 
values to make enough numbers of training samples. 
Because the physiological activities and the protein 
expression levels were independently measured for a 
constituent, it is needed to find an appropriate 
correspondence between them. To find an appropriate 
correspondence, we employ simple regression analysis. 
The correspondence with the smallest p-value is 
selected from all the available correspondences. 

The range of physiological activities as the training 
signals are from 0 to Z (Z > 1), physiological activities 
are usually normalized because the output of neurons 
is limited from zero to one. At that time, acceptable 
error will become too small to terminate training 
process by normalization. To solve this problem, we 
use amplitude extended neural networks (AENNs). 
AENNs have two parameters K and l in the activation 
function of our system like as ݂ሺݔሻ ൌ   ܭ

1൅݁െ݈ݔ. The K 
adjusts amplitude of sigmoid function and the l adjusts 
slope of sigmoid function. By using the sigmoid 
function with these parameters, it does not need to 
normalize training signals. 
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Table 1 A part of constituents and concentrations 
for training samples. 

 

 
Fig.1 Correspondence between the protein 

expression levels and the physiological activities. 
 

II. PREPROCESSING 

1. Constituents for training sample 

We use thirty kinds of constituents of foods and 
medicines, a part of them is shown in Table 1. The 
constituents and medicines are poured over HepG2 
cells in three concentration levels, then protein 
expression levels and physiological activities are 
measured, respectively. The protein expression levels 
and physiological activities are measured in six times 
for each constituent. So the number of training sample 
is 540( ). The kinds of proteins are as 
follows; Thioredoxin, Survivin, HSP70, XIAP, FADD, 
TXNRD1, HSP90, MxA, tNOX, NQO1, ERK2, p53 
and Bcl2. We adopt the following three physiological 
activities; anti-proliferative activity, anti-inflammatory 
activity and anti-oxidant stress activity.  

6330 ××=

 

2. Correspondence of protein expression levels 

with physiological activities 

Since the protein expression levels and the 
physiological activities are respectively measured, it is 
needed to find an appropriate correspondence between 
the protein expression levels and the physiological 
activities even if they are observed by the same 
constituent and the same concentration. For this 
correspondence, we use simple regression analysis, 
whose concept is illustrated in Fig.1. The X-axis and 

Tabl
ሺXଵ

e 2 C nden p-value. orrespo ce and 
case ,Yଵ,ሻ ሺXଶ,Yଶ,ሻ ሺXଷ,Yଷ,ሻ p-value 
1 (1.0, 1.5) (2.2, 2.4) (3.1, 3.8) 0.13

2 (1.0, 1.5) (2.2, 3.8) (3.1, 2.4) 0.69

3 (1.0, 2.4) (2.2, 1.5) (3.1, 3.8) 0.64

4 (1.0, 2.4) (2.2, 3.8) (3.1, 1.5) 0.80

5 (1.0, 3.8) (2.2, 1.5) (3.1, 2.4) 0.53

6 (1.0, 3.8) (2.2, 2.4) (3.1, 1.5) 0.03

 

 
Fig.2 The structure of ANNs. 

 
the Y-axis in Fig.1 denote the protein expression levels 
and the physiological activities, respectively. 

Here explains how to correspond between protein 
expression levels and physiological activities by 
simple regression analysis. Let the protein expression 
levels be measured as {1.0, 2.2, 3.1}, and let the 
physiological activities be measured as {1.5, 2.4, 3.8}. 
In this case, six combinations of correspondence are 
available as shown in Table 2. We execute single 
regression analysis for all combinations. In Fig.1 the 
left shows the case 1 and the right shows the case 4. 
We select the case with minimum p-value among all 
combinations, then case 6 is selected. The p-value 
expresses probability that the protein expression levels 
have no relation with the physiological activities. 
 

III. AMPLITUDE EXTENDED NEURAL
 NETWORKS 

Fig.2 shows a sample of three layers ANNs [6]. 
The ANNs has an input layer, a hidden layer and an 
output layer. A node of the input layer connects all 
nodes in the hidden layer, and a node of the hidden 
layer connects all nodes in the output layer. Equation 
(1) and Equa xpr e input and output in the 
neuron j on h ely. 

tion (2) e ess th
 t e layer L, respectiv

௝௅ݔ ൌ ିଵ,௜
,௝ ,              (1)   ∑ ௜ܱ

௅ିଵݓ௅
௅

௜

௝
௅ ൌ  ݂ሺݔ௝௅ሻ,   (2) ܱ

where ݓ௅ିଵ,௜
௅,௝  denotes the weight from the neuron i 

on the layer L-1 to the neuron j on the layer L. Sigmoid 
function described in Equation (3) is usually used as 
activation function, 

  concentrations( Mμ ) 

al
ip

ha
tic

 a
ci

d RosmarinicAcid 5 15 50
LipoicAcid 100 300 1000
ArachidonicAcid 15 45 100
CLA12C 1 3 10
CLA9C 10 30 100

… 

an
ti-

vi
ru

s IFN 100 300 1000
Ribavirin 2 10 30
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Table 3 Training paramet s. er

 
݂ሺݔሻ ൌ   ଵ

ଵା௘షೣ
 .  (3) 

Since the range of physiological activities as the 
training signals are from zero to Z (Z >1), the training 
signals are usually divided by the maximum 
physiological activity for normalization. At that time 
acceptable error is also divided, it will become too 
small to terminate training process. To avoid 
normalization y logical activities, we employed 
two parameters m id function, 

 of ph sio
K and l in sig o

 ݂ሺݔሻ ൌ   ௄
ଵା௘ష೗ೣ

 .  (4) 
K adjusts the amplitude of sigmoid function and the l 
adjusts the slope of sigmoid function. By using 
sigmoid function with these parameters, it does not 
need to norma ain nlize tr i g signals.  

 is defined as follow, 
ሻ݌ሺܧ ൌ   ଵ

ଶ

The error E
 ሺܶሺ݌ሻ െ ௜ܱ

௅ሺ݌ሻሻଶ (5) , 
for the training sample p. To minimizeܧሺ݌ሻ , we 
ob  f

i
L,tain the ollowing rule derived from  ∂E

∂w ,
j

Lെ1
ൌ 0. 

Δݓ௅ିଵ,௜
௅,௝ ሺ݌ሻ ൌ ߟ  · ݂ ௜ܱ

௅ሺ݌ሻ൯      ᇱሺx୨Lሺ݌ሻሻ · ൫ܶሺ݌ሻ െ
൅ ߝΔݓ ଵ ௜

௅,௝ ሺ݌ െ 1ሻ,  (6) ௅ି ,

݂ᇱሺx୨Lሺ݌ሻሻ ൌ  
௟·௄·௘ష೗ೣೕ

ಽሺ೛ሻ

ሺଵା௘ష೗ೣೕ
ಽሺ೛ మ

 

ሻሻ
 ,   

(7) 
where η is rate p ter a d s inertia parameter. 
The error o e n (8), 

arame n  ε i
f den u o s defi

 ൌ  (8) 
 hid n r ns i ned by Equatio
δ୧Lିଵ  ∑ wLିଵ,୧

L,୨
୨ δ୨Lሺ݌ሻ,   

δ୨Lሺ݌ሻ ൌ  ݂
Ԣ൫xjLሺ݌ሻ൯ · ቀܶሺ݌ሻ െ  ሻቁ, (9)݌ሺܮܱ݅

w z he . T  weight 
up

here is the index of t output layer he
date rule is obtained as Equation (10). 
௅ିଵ,௜ݓ
௅,௝ ሺ݌ ൅ 1ሻ ൌ ௅ିଵ,௜ݓ

௅,௝ ሺ݌ሻ ൅  Δݓ௅ିଵ,௜
௅,௝ ሺ(10)  .(݌ 

IV. EXPERIMENTS AND DISCUSSIONS 

We compared estimation accuracy between 
convention ANNs with normalized samples and our 
AENNs without normalization. The parameters of 
experiments are as follows; 

 

 
 Network size : 13-6-1 (13 input neurons, 6 hidden 

neurons, 1 output neuron) 
 runs : 10 run 
 number of test sample : 72 

 4 extracts 
 extract of blueberry leaf by boiled 

water 
 extract of blueberry leaf by ethanol 
 extract of onion leaf by boiled water 
 extract of tea leaf by boiled water 

 3 concentrations 
 6 samples 

 
We change K from 1.0 to 3.0 with 0.5 step and we 

also change l from 0.1 to 1.0 with 0.2 step. These K 
and l were decided by preprimary experiments. The 
conditions of experiments are summarized in Table 3. 

 
A. Anti-proliferative activity 

Fig.3 shows the average estimated value of 
anti-proliferativity activity. ANN can estimate the 
anti-proliferativity activity 4 samples within acceptable 
error for all 12 samples (4/12). AENNs can estimate 
the anti-proliferativity activity 3 samples within 
acceptable error for all 12 samples (3/12). The result 
by ANNs without averaging was 39/72 and that of 
AENNs was 36/72.This results showed that ANNs and 
AENNs could estimate activity with the almost same 
accuracy. 
 
B. Anti-inflammatory activity 

Fig.4 shows the average estimated value of 
anti-inflammatory activity. ANN can estimate 8/12 and 
AENNs can estimate 7/12 for anti- inflammatory 
activity. The result by ANN without averaging was 
43/72 and that of AENNs was 40/72. ANN and AENNs 
could estimate activity with the almost same accuracy. 

 
C. Antioxidant activity 

Fig.5 shows the average estimated value of 
antioxidant stress activity. ANN can estimate 8/12 and  

 K l 
Physiological 

activity Accept 
error η ε Max 

iteration 
Hidden 
neuronsMin. Max.

anti-proliferative 
activity 2.0 0.8 0.30 1.14 0.06

0.4 0.7 20000 6anti-inflammatory 
activity 2.0 0.8 0.06 1.59 0.14

antioxidant stress 
activity 2.5 0.2 0.01 2.68 0.2
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Fig.3 Estimated values of anti-proliferativity 

activity 
 

 
Fig.4 Estimated values of anti-inflammatory 

activity 
 

Fig.5 Estimated values of antioxidant stress activity 
 

AENNs can estimate 7/12 for anti- inflammatory 
activity. The result by ANN without averaging was 
15/72 and that of AENNs was 46/72. The error of 
conventional ANN is large, because the error is 
multiplied by the maximum value of the training 
samples as the inverted normalization process on other 
hand, out AENNs does not need the inverted 
normalization process, so it can be said that the 
AENNs are suitable for estimation with large 
physiological activities. 

V. CONCLUSIONS 
We develop a physiological activity estimation 

system from protein expression levels using amplitude 
extended neural networks. Since protein expression 
levels and physiological activities are separately 
measured, we employ simple regression analysis for 
finding an appropriate correspondence between protein 
expression levels and physiological activities. And 
AENNs adjust the amplitude of sigmoid function to 
avoid normalization of physiological activities, it is 
suitable to estimate some kinds of large physiological 
activities. The experimental result showed that our 
system could estimate antioxidant stress activity more 
accurate than conventional ANNs with normalization. 

It remains to adjust the parameters K and l 
automatically through training process as a future 
work. 
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