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Abstract: In this paper, a Box–Cox transformation-based annealing robust radial basis function networks (ARRBNFs) 
is proposed for the identification algorithm with outliers. Firstly, a fixed Box–Cox transformation-based ARRBFNs 
model with support vector regression (SVR) is derived to determine the initial structure. Secondly, the results of the 
SVR are used as initial structure in the fixed Box–Cox transformation-based ARRBFNs for the identification algorithm 
with outliers. At the same time, an annealing robust learning algorithm (ARLA) is used as the learning algorithm for the 
fixed Box–Cox transformation-based ARRBFNs, and applied to adjust the parameters and weights. Hence, the fixed 
Box–Cox transformation-based ARRBFNs with ARLA have fast convergence speed for the identification algorithm 
with outliers. Finally, the proposed algorithm and its efficacy are demonstrated with an illustrative example in 
comparison with Box–Cox transformation-based radial basis function networks. 
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I. INTRODUCTION 
 
The standard radial basis function networks 

(RBFNs) consists of three layers; namely, the input layer, 
the hidden layer, and the output layer. Due to the RBFNs 
structural simplicity, it has been widely used for 
nonlinear function approximation [1] and system 
identification [2]. For the different applications the 
learning algorithms of the RBFN are designed with 
different optimization criteria. One of the main 
applications that the RBFNs has been applied to system 
dynamic modeling [2]. Besides, it is well known that the 
well conditioning of a model base is critically important 
in order to obtain good parameter estimators for the 
identification problem. Hence, identification algorithm 
has many important applications including nonlinear 
control systems, robotic systems, etc. 

In general, the Box-Cox transformation on the 
system output is one of the major statistical techniques 
Box and Cox [3] to reduce heteroscedasticity when the 
distribution of the dependent variable is unknown. Hong 

[4] proposed that a RBFNs model base is derived based 
on a rank revealing orthogonal matrix triangularization; 
namely, QR decomposition Hong and Pan [5]. Besides, 
the identification algorithm uses Gauss-Newton method 
to derive the Box-Cox transformation parameter. For a 
large data set, using the QR decomposition increases 
computational expense for model structure. On the other 
hand, for the scientific and engineering applications, the 
obtained training data are always subject to outliers. The 
intuitive definition of an outlier Hawkins [6] is “an 
observation which deviates so much from other 

observations as to arouse suspicions that it was 
generated by a different mechanism.” However, outliers 
may occur due to various reasons, such as erroneous 
measurements or noisy data from the tail of noise 
distribution functions. When the outliers are exists, there 
still exist some problems in the algorithm of Hong [4].  

In this paper, a fast identification algorithm with 
outliers is introduced for the Box-Cox transformation- 
based ARRBFNs. Firstly, the support vector regression 
(SVR) is derived to determine the initial structure. 
Because of a SVR approach is equivalent to solving a 
linear constrained quadratic programming problem under 
a fixed structure of SVR, the number of hidden nodes, 
the initial parameters and the initial weights of the 
ARRBFNs are easy obtained via the SVR approach. 
Secondly, an annealing robust learning algorithm 
(ARLA) is used as the learning algorithm for the fixed 
Box–Cox transformation-based ARRBFNs, and applied 
to adjust the parameters and weights. 

II. BOX-COX TRANSFORMATION-BASED 
ARRBFNS 

Given a data set ( ){ }Niyx ii ,,2,1,, L
r

= , where ix
r

 
is the system input vector and iy  is the positive system 
output. N is the number of data samples. The objective of 
Box-Cox transformation is usually to make residuals 
more homogeneous in regression, or transform data to be 
normally distributed. The well known Box-Cox version 
of power transformation Box and Cox [4] is formed as 
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where λ  is the transformation parameter and 
N

i
N
i yy 1

~
=∏=  is the geometric mean of the system 

output. For a given λ , an RBFN with a single output 
can be represent as Hong [4] 
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where )(xf
r

 is the output of the Box-Cox 
transformation-based ARRBFNs Chuange et al [7], e  is 
model error, [ ]TLwwwW ,,, 21 L= is the synaptic weight 
vector, and L is the number of hidden layer in the 
Box-Cox transformation-based ARRBFNs. The radial 
basis functions jG  are chosen as Gaussian functions that 
it can be express in the form 
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where jm  and jσ  are the center and width of 
Gaussian functions, respectively. Hence, the )(⋅f  can 
be rewritten as  
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and the inverse of Box-Cox transformation upon 
( )Wxf ,
r

 for given 0≠λ  and W  is 
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 in the 

proposed approach. The proposed structure is shown in 
Fig. 1. 
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ŷ

+−

1w

2w

Lw

iz

 WeightsInitial and 
Parameters Initial the

 determine to
 SVMan  Using

 Weightsand
 Parameters the

 UpdateTo
ARLAAn  Using

 
Fig.1. Box-Cox transformation-based ARRBFNs. 

 
2.1 The initial structure of Box-Cox transformation- 
based ARRBFNs by the SVR approach 

An SVR approach is used to approximate an 
unknown function from a set of 

samples ( ){ }Nizx ii ,,2,1,, L
r

= , where the system output 

iy  is replaced by the normalized transformed 
response iz . Assuming that a set of basis functions 
{ }mkxgk ,,2,1),( L

r
=  is given, there exists a family of 

functions that can be expressed as a linear expansion of 
the basis function. Then, the problem of function 
approximation transforms into that finding the 
parameters of the following basis function linear 
expansion: 
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k
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where ( )mθθθ ,,1 K
r
∈  is a parameter vector to be 

identified and b is a constant. Then, the solution for the 
problem is to find f that minimizes 
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subject to the constraint 
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where )  ( ⋅εL  is the ε -insensitive loss function and 
defined as 
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for some previously chosen nonnegative numberε . In 
(9), the constraint is imposed to trade off the complexity 
of the solution. 

By using the Lagrange multiplier method, it can be 
shown Vapnik [8] that the minimization of (8) leads to the 
following dual optimization problem, minimize 

( )

,)()())((
2
1        

)()(,

1, 1

**

1 1

***

∑ ∑

∑ ∑

= =

= =

⎥
⎦

⎤
⎢
⎣

⎡
−−+

−−+=

N

sr

m

k
skrkssrr

N

r

N

r
rrrrr

xgxg

yQ

rr
αααα

ααααεαα
 (11) 

subject to the constraint 
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In (11), the inner product of basis functions )(xgk
r

 is 
replaced via the kernel function 
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The kernel function determines the smoothness 
properties of solutions and should reflect a prior 
knowledge of the data. In the literature, the polynomials, 
B-spline and Gaussian kernel function often used Vapnik 
et al [9]. Hence the optimization of (11) is rewritten as 
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It was shown in Vapnik et al [9] that the solution of the 
SVR approach is in the form of the following linear 
expansion of kernel functions (i.e. the parameter iθ  in 
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Note that only some of )( *
kk αα − ’s are not zeros and the 

corresponding vectors kx
r

’s are called SVs. In this paper, 
the Gaussian function is used as the kernel function. 
Hence, (15) can be rewritten as 
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where SV is the number of  SVs, 0)( * ≠−= kkk ααυ  
and kx

r
 are SVs. On comparing (16) with (4), the SV , 

k , kυ  and kx
r

 in (16) can be regarded as the L , j , 

jw  and jm  in (4), respectively.   That is, based on 

Eqs. (4) and (16), the initial weight jw , the number of 
hidden node L, and the parameters of the proposed 
neural network in Fig. 1 can be determined via an SVR 
method. 
2.2 The annealing robust learning algorithm of 
Box-Cox transformation-based ARRBFNs 

In the Box-Cox transformation-based ARRBFNs, 
an ARLA is proposed as a learning algorithm. An 
important feature of the ARLA that adopts the annealing 
concept in the cost function of robust back-propagation 
learning algorithm is proposed in Chuang et al [10]. Hence, 
the ARLA can overcome the existing problems in robust 
back-propagation learning algorithm. A cost function for 
the ARLA is defined here as 
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t is the epoch number, ),( txe ii
r

 is the error between the 
ith Box-Cox transformation of desired output and the ith 
output of the proposed approach at epoch  t, )(tβ  is a 
deterministic annealing schedule acting like the cut-off 
points and )(⋅ρ is a logistic loss function and defined as 
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Based on the gradient-descent kind of learning 
algorithms, the synaptic weights jw , centers jm , width 

jσ  of Gaussian function and jλ of Box-Cox 
transformation parameter are updated as 
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whereη  is a learning constant and )(⋅ϕ  is usually 
called the influence function. When outliers exist, they 
have a major impact on the approximated results. Such 
an impact can be understood through the analysis of the 
influence function. The learning algorithm of the 
proposed approach is summarized as follows: 
Step 1: Using Box-Cox transformation by (1) to form the 

transformed output. 
Step 2: Initialize the Box-Cox transformation-based 

ARRBFNs structure using an SVR approach that 
is described by (16) with the given Gaussian 
kernel functions, theε -insensitive function and 
the constant C. 

Step 3: Compute the Box-Cox transformation iz  and 
its error by (18) for all training data. 

Step 4: Update the synaptic weights jw , the centers jm , 
the width jσ  of Gaussian function and the 

jλ of the Box-Cox transformation parameter are 
iteratively updated by (20)~(24), respectively. In 
this process, the influence of the outliers is 
detected and discriminated. 

Step 5: Determine the values of the annealing schedule 
tkt =)(β  for each epoch, where k is set as 

{ }
initialiemax2 ⋅ . 

Step 6: Compute the robust cost function E  defined by 
(17). 

Step 7: If the termination conditions are not satisfied, 
then go to Step 3; otherwise terminate the 
learning process. 

Step 8: The inverse of the Box-Cox transformation (6) is 
applied to the Box-Cox transformation-based 
ARRBFNs model output as the system output 
predictions ŷ . 

III.SIMULATION RESULTS 

The simulations were conducted in the Matlab 
environment. The root mean square error (RMSE) of the 
testing is used to measure the performance of the learned 
networks. The RMSE is defined as  

( )
N

yyN

i ii∑ =
−

= 1
2ˆ

RMSE ,    (25) 

where iy  is the desire value at ix  and iŷ  is the 
output of the Box-Cox transformation-based ARRBFNs. 
Example. The sinc function is considered and defined as 

5sin)( +⎟
⎠
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xxy , 1010 ≤≤− x . (26) 
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Because the output y must be positive in the Box-Cox 
transformation, the output of sinc function must shifts up 
5. Ten hundred training data )(xy  were generated by 
using uniformly distributed random ].10,10[−∈x  
Besides, the noise is a normal disturbance with )1,0(N  
and one hundred artificial outliers are added to the sinc 
function. Firstly, an initial structure of the Box-Cox 
transformation-based ARRBFNs is obtained by an SVR 
approach. The parameters in the SVR are set as 3=C , 
Gaussian kernel function with 3.0=σ and .05.0=ε  
The initial structure of the Box-Cox transformation- 
based ARRBFNs with the hidden nodes (i.e. the number 
of SVs) are obtained as 149. Secondly, the parameters of 
the Box-Cox transformation-based ARRBFNs are 
adjusted by the ARLA. After 100 epochs using the 
ARLA, the testing RMSE of the Box-Cox 
transformation-based ARRBFNs is 0.0263, as shown in 
Fig. 2. For a comparison study, a Box–Cox 
transformation-based radial basis function networks 
Hong [4] was constructed for the same data, but the 
testing RMSE is 0.4704, as shown in Fig. 3. Besides, the 
results of comparison with different training data and 
artificial outliers are shown in Table 1. From the 
simulation results, the proposed robust learning 
algorithms could indeed improve the learning 
performance as the training data contain outliers. 
 
Table 1: The results with different training data and 
artificial outliers are shown. 

RMSE The 
number 
of 
training 
data 

The 
number 

of 
artificial 
outliers 

Box-Cox 
transformation- 
based RRBFNs 

Box-Cox 
transformation- 
based RBFNs 
Hong [8] 

100 10 0.0549 0.4721 
1000 100 0.0263 (Fig.2) 0.4704 (Fig.3)
5000 500 0.0270 0.5131 
8000 800 0.0254 Out of memory 
10000 1000 0.0434 Out of memory 
 

IV. CONCLUSIONS 
In this paper, we proposed a fast identification 

algorithm with outliers, namely the fixed Box-Cox 
transformation-based ARRBFNs. Using an SVR 
approach determines the number of hidden nodes, the 
initial parameters of the kernel, and the initial weights of 
the proposed neural networks. At the same time, an 
ARLA is applied to adjust the parameters and weights. 
Finally, from the simulation results show that the fixed 
Box–Cox transformation-based ARRBFNs with ARLA 
have fast convergence speed for the identification 
algorithm with outliers. 
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Fig.2. The final output of the proposed approach after 
100 epochs uses the ARLA for Example 
(RMSE=0.0263). 

-10 -8 -6 -4 -2 0 2 4 6 8 10
2

3

4

5

6

7

8

9
Final approximated results of Box-Cox transformation-based RBFNs

Noisy observation
Model prediction
Underlying function

 
Fig.3. The final output of the Box-Cox transformation- 
based RBFNs for Example (RMSE =0.4704). 
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