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Abstract: In this paper, the annealing robust radial basis function networks (ARRBFNs) which consist of a radial basis
function networks and a support vector regression (SVR) and an annealing robust learning algorithm (ARLA) are
proposed for the prediction of chaotic time series with outliers. In order to overcome the initial structure problems of the
proposed neural networks, the SVR is utilized to determine the number of hidden nodes, the initial parameters of the
kernel and the initial weights for the proposed ARRBFNs. Then, the ARLA that can against the outliers is applied to
tune the parameters of the kernel and the weights in the proposed ARRBFNs under the initial structure with SVR. From
the simulation results of Mackey–Glass time series show that the proposed approach with different SVR can overcome
outliers and fast learning speed. Besides, results of simulation are also given to demonstrate the validity of proposed
method for the chaotic time series with outliers.
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I. INTRODUCTION

The prediction of time series is a very important
application including weather forecast, economic plan,
behavior-based intelligent mobile robot, etc. With the
character of nonlinear system, chaotic time series
presents sensitive dependence on initial conditions and
unstable activities. Hence, many approaches with neural
networks are proposed recently.

Gu and Wang [1] used recursive least square
algorithm with singular value decomposition to estimate
the parameters of fuzzy model. Zhang et al. [2] used
genetic algorithm and particle swarm optimization to
model chaotic time series. Harpham and Dawson [3]

developed a chaotic time series prediction based on
radial basis function networks (RBFNs). RBFNs can be
used to approximate the desired outputs without needing
a mathematical explanation of how the outputs
functionally depend on the inputs. However, these
approaches haven’t a methodical way to determine the
number of hidden nodes, the initial parameters of the
kernel and the initial weights of the networks. Besides,
the data we obtained sometimes contain outliers. Outliers
may occur due to improper measurements or noisy data.
When outliers occur there is overfitting problem that
appears in the learning of these neural networks
approaches [4].

Support vector regression (SVR) approach was
proposed by Vapnik [5], by the insensitive loss function
can make use of a small subset of the training data,
called the support vectors (SVs), to approximate the

desired outputs within a tolerance band. The selection of
the hyper-parameters for SVR lacks systematic way to
determine [6], and could not do with learning mechanism
to update the weights and the parameters of kernel. In
this paper, in order to overcome the above problem, an
annealing robust radial basis function networks
(ARRBFNs) based on different SVR is proposed to
predict Mackey–Glass time series with outliers. First, an
 or  SVR is used to determine the number of
hidden nodes, the initial parameters of the kernel, and the
initial weights of the ARRBFNs. Then the ARLA is
applied to tune the parameters of radial basis functions
and the synaptic weights. It is expected that the proposed
approach has fast convergence speed and the ability
facing outliers can predict perfectly.

II. THE PROPOSED ARRBFNS FOR
PREDICTION OF CHAOTIC TIME SERIES

WITH OUTLIERS

In this paper, the Mackey-Glass time series is used
to simulation, and is defined as

( )
( ).

1 ( )

x t
x x t

x t

 





 

 
 (1)

The problem is how to utilize the past values of x to
predict the future value ( )x t t , as following

( ) ( ( ), ( ), , ( )) ,x t t f x t x t t x t n t     (2)
where t is the sampling interval. In general, outliers
occur due to various reasons, such as improper
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measurements or noisy data. Our purpose is to find a
suitable nonlinear identification model

ˆ(̂ ) ( ( ), ( ), , ( ))x t t f x t x t t x t n t     (3)
of the time series, where (̂ )x t t is the output of the

neural network and f̂ is the estimate of f , which
when subjected to the same past values of x , produces
an output (̂ )x t t which approximates ( )x t t as
close as possible.

When the radial basis functions are chosen as
Gaussian functions, an ARRBFNs can be expressed as
the form

2

2
0 0

(̂ ) exp( )
2

L L
j

l jl j jl
j j j

x t t G 
 


    

x m
,

for 1, 2, ,l p  , (4)

where
l̂

x is the lth output of the neural networks,

( ( ), ( ), , ( ))x t x t t x t n t   x is the input to the

neural networks, ,
jl

w 0 ,j L  1 ,l p  are the

synaptic weights, , 0 ,
j

G j L  are the Gaussian

functions, , 0 ,
j

j L m and , 0 ,
j

j L   are the

centers and the widths of ,
j

G respectively, and L is

the number of the Gaussian functions, in which we can
find that L also denotes the number of hidden nodes.

When utilizing an ARRBFNs for the identification
of time series, the goal is to minimize the index as

 
1

1
( ) ( ); ( )

N

N i
i

J h e h h
N

 


  , (5)

where
ˆ( ) ( ) ( )

i i i
e h x t t x t t    , (6)

h is the epoch number, ( )
i

e h is the error between the
ith desired output and the ith output of the ARRBFNs at
epoch h and ( ) is a logistic loss function and
defined as

2( )
[ ; ] ln 1

2
i

i

e
e


 


 

 
  

, (7)

where ( )h is a deterministic annealing schedule
acting like the cut-off points. Hence the ARRBFNs are
proposed to overcome the issues while the time series in
equation (1) facing with outliers and have faster learning
speed than the traditional RBFNs to attain perfect
prediction. In the following section, it will be shown how
to use SVR approaches to choose these initial values
methodically.

III. INITIAL STRUCTURE OF ARRBFNS BY
DIFFERENT SVR APPROACH

An SVR approach is used to approximate an
unknown function from a set of (input, output) samples

{ ( , ( )), 1, , }.
i i

x t t i N  x Suppose that a set of

basis functions { ( ), 1, 2, ..., }
k

g k mx is given, there
exists a family of functions that can be expressed as a
linear expansion of the basis functions. The theme is then
be changed into finding the parameters of the following
basis linear expansion

1

( , ) ( )
m

k k
k

g g b


 x x , (8)

where
1 2

( , , ..., )
m

  is a parameter vector to be

identified and b is a constant to be found. The
derivation of ARRBFNs for initial structure with the
different SVR will be derived in the following sections.

1. Initial Structure of the ARRBFNs by the -SVR
Approach

Vapnik[5] firstly proposed the -SVR approach.
The solution for the theme is to find ( , )g x  that
minimizes

1

1
( ) ( ( , ))

n

i
i

R L u g
n




  i
x  , (9)

subject to the constraint
2

C , (10)

where ( )L  is the -insensitive loss function defined
as

0 for
( )

otherwise ,

e
L e

e














(11)

for some previously chosen nonnegative number .
By using the Lagrange multiplier method,

proposed by Vapnik[5] and Smola et al. [7] and the inner
product of basis function ( )

k r
g x is replaced via the

kernel function

1

( , ) ( ) ( ) .
m

r s k r k s
k

K g g


x x x x (12)

It was shown in Vapnik [5] that the solution of the SVR
approach is in the form of the following linear expansion
of kernel function

* *

1

( , , ) ( ) ( , ) .
m

k k k
k

g K b  


  x x x (13)

This means that the parameter
i

 in equation (8) can be

represented as *

1

( ) ( )
m

k k i
i

g 


 x . Note that only some

of *( )
k k

  ’s are not zeros and the corresponding

vectors
k

x ’s are called support vectors (SVs). The
derivation of ARRBFNs for initial structure with the
-SVR will be derived in next section.

2. Initial Structure of the ARRBFNs by the -SVR
Approach
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As it is hard to select a suitable , the -support
vector machine is proposed by Schölkopf et al. [8], a new
parameter  is introduced and one can control the
number of SVs and training errors. By the inner product
of basis function ( )

k r
g x is replaced via the kernel

function, the issue is to find the parameters ( 0 1  )
and C to have the solution of the approach is in the
form of the following linear expansion of kernel function

* *

1

( , , ) ( ) ( , ) .
m

k k k
k

g K b  


  x x x (14)

In this paper, the Gaussian function is used as the
kernel function. Hence, (13) and (14) can be rewritten as

2#

2
1

( , ) exp( )
2

SV
k

k
k k
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
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  

x x
x , (15)

where # SV is the number of SVs, *( ) 0
k k k

    

and
k

x are SVs. Let
2

0
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exp( ) 1
2
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x x
and

0
b , (15) can be rewritten as
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x x
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As mentioned above and comparing (16) with (4),
# ,SV ,k ,

k


k
x and

k
 in (16) can be regarded as the

, , ,
jl j

L j w m and ,
j

 in (4), respectively. From the

above derivation, we can find that the number of hidden
node ,L the initial weights ,

jl
w ,

j
m and ,

j
 of the

ARRBFNs are determined via the -SVR and -SVR
approach.

IV. ARLA FOR THE ARRBFNS

In this paper, the ARLA is applied to train the
proposed ARRBFNs. Using the annealing concept in the
cost function of robust back-propagation (BP) learning
algorithm, can overcome the existing issues in robust BP
learning algorithm. A cost function for ARLA is defined
here as (5), where ( )h is a deterministic annealing
schedule acting like the cut-off points to decide that how
large errors can be considered as outliers. The proposed
ARRBFNs with the ARLA can overcome the problems
of initialization and can deal with the time series with
outliers. In the ARLA, the properties of the annealing
schedule ( )h have [4]:

(A)
initial

, ( )h for the first epoch, has large values;

(B) ( ) 0h  for h ;

(C) ( )h k h  for any h epoch, where k is a
constant.

Based on the gradient-descent kind of learning
algorithms, the synaptic weights

jl
w , the centers

j
m

and the width
j

 of Gaussian function are updated as

1
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e e h
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


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(20)

where  is a learning constant.
The learning algorithm of the ARRBFNs for the

chaotic time series with outliers is summarized as
follows:
Algorithm A :
Step 1: Generate the data from chaotic time series.
Step 2: Using an -SVR approach that is depicted by

equations (7) through (13), or using an
 -SVR approach that is described by
equations (14), to get the initial structure of
ARRBFNs.

Step 3: Compute the estimated output and its error by
equation (6) for all training data.

Step 4: Decide the values of annealing schedule
( )h k h  for each epoch, where k is set as

initial
2 {| | }

i
max e .

Step 5: Update
jl

w ,
j

m and
j

 of Gaussian function

iteratively updated by equations (17) through
(20). In this step, the outliers are presented.

Step 6: Compute the robust cost function
N

J defined
by equation (5).

Step 7: If the termination conditions are not satisfied,
then go to Step 3; otherwise stop the learning
process.

V. SIMULATION RESULTS

In this section, the root mean square error (RMSE)
of the testing data is used to measure the performance of
the learned networks. The RMSE is defined as

 2

1
ˆ( ) ( )N

i i ix t t x t t
RMSE

N
   

 , (21)

where ( )
i

x t t is the desired output and (̂ )
i

x t t
is the output of the proposed ARRBFNs.
Example:
Mackey–Glass time series is defined as equation (1). The
initial values of the system are (0) 1.2,x  0.2,

0.1, 10.  is the time-delay parameter. If
17 , the time series show the chaotic phenomenon.

Compare with Gu and Wang [1] for being convenient, the

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 233



proposed networks are chose as
ˆ(̂ 6) ( ( ), ( 6), ( 12), ( 18)), 19x t f x t x t x t x t t      . (22)

That is, ( ), ( 6), ( 12), ( 18)x t x t x t x t   are selected as
the input variables of the ARRBFNs, and ( 6)x t  as
the output variable of the ARRBFNs.

1000 simulation data points are generated from
equation (1), the former 500 points with five artificial
outliers are selected as the training data points to build
the proposed ARRBFNs of the Mackey–Glass time
series, and the rest 500 points as the testing data to test
the validity of the proposed ARRBFNs. The parameters
in -SVR are set as C=10, the Gaussian kernel function
with 0.35 , 0.15 , with the hidden nodes (i.e.
the number of SVs) is obtained as 10. Based on the
initial structure of the ARRBFNs and the learning
constant is 0.05, after 2000 epochs training, the final
training output, the error, the prediction output and the
corresponding error are shown in Fig. 1 (a) ~ (d), and the
final RMSE is 0.0094. Another initial structure is
obtained by an -SVR approach, the parameters are set
as C=1, 0.0009 and 0.15 , with the hidden
nodes is obtained as 10. Based on the above initial
structure, the learning constant is 0.05, after 2000 epochs
training, the results are shown in Fig. 2 (a) ~ (d), and the
final RMSE is 0.0096. From the simulation results show
that the proposed ARRBFNs can overcome the outliers
and attain a good training and prediction.

VI. CONCLUSIONS

In this paper, an  or  SVR based the
ARRBFNs with ARLA for the prediction of chaotic time
series with outliers is developed. We firstly utilize the
SVR approaches to determine the number of hidden
nodes, the initial parameters of the kernel and the initial
weights of the proposed ARRBFNs. Then the ARLA is
applied to tunes the parameters of the kernel and the
weights of the time series that can against outliers. From
the results indicated that the proposed method can be
used as a reliable technique for the prediction of chaotic
time series with outliers.
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Fig. 1. (a) The final output, (b) the error, (c) the
prediction output and (d) the error of prediction for the
proposed structure with -SVR based under the training
data sets contain five artificial outliers
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Fig. 2. (a) The final output, (b) the error, (c) the
prediction output and (d) the error of prediction for the
proposed structure with -SVR based under the training
data sets contain five artificial outliers
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