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Abstract: When a radial basis function network (RBFN) is used for identification of a nonlinear multi-input 
multi-output (MIMO) system, the number of hidden layer nodes, the initial parameters of the kernel, and the initial 
weights of the network must be determined first. For this purpose, a systematic way that integrates the support vector 
regression (SVR) and the least squares regression (LSR) is proposed to construct the initial structure of the RBFN. First, 
determine the number of hidden layer nodes and the initial parameters of the kernel by the SVR method. Then the 
weights of the RBFN are determined by solving a minimization problem based on the concept of LSR. After 
initialization, an annealing robust learning algorithm (ARLA) is then applied to train the RBFN. With the proposed 
initialization approach, one can find that the designed RBFN has a fast convergent speed. To show the feasibility and 
superiority of the annealing robust radial basis function networks (ARRBFNs) for identification of MIMO system, one 
example is included. 
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I. INTRODUCTION 

In industry, multi-input multi-output (MIMO) system 
is applied widely. Structural identification and 
parameter estimation of nonlinear MIMO system are 
very important but rather difficult issues in system 
identification. Radial basis function networks (RBFNs) 
are widely used for system modeling recently since they 
have only one hidden layer and have fast convergence 
speed. RBFNs are often referred to as model-free 
estimators since they can be used to approximate 
functions without requiring a mathematical description 
of how the outputs functionally depend on the inputs. 
This means that they can build systems from 
input–output patterns directly, or they learn from 
examples without any knowledge of the model type. 

When RBFNs are used for system identification, the 
number of hidden nodes, the initial parameters of the 
kernel, and the initial weights of the network must be 
determined first. In the past few years, several 
initializations for RBFNs have been proposed. First, the 
number of hidden nodes is fixed, and then all kinds of 
algorithms (such as genetic algorithms and gradient 
descent method) is used to optimize all the parameters, 
namely the initial parameters of the kernel, and the 
initial weights of the network. However, a systematic 
way to determine the initial structure of a RBFNs for a 

MIMO system is still not established. Therefore, based 
on support vector regression (SVR), a least square 
regression method is proposed to solve this problem in 
this paper. Given the sample set that describes the 
input-output relation of a function, the first step of the 
proposed method is to solve an SVR problem for one 
input-output of an MIMO system. Then the weights of 
RBFNs for another input-output can be obtained by 
using least square regression (LSR). From the SVR 
results, the initial structure of an RBFN can be 
determined. After initialization, annealing learning 
algorithms can then be applied to train the RBFNs. With 
the proposed initialization method, the MIMO system 
has fewer neurons and the designed RBFNs have fast 
convergence speed. To show the feasibility and 
superiority of the proposed method, simulation results 
are included for illustration. 

 
II. RBFNS FOR IDENTIFICATION OF 

NONLINEAR MIMO SYSTEMS 

In general, the input-output relation of a nonlinear 
MIMO system can be expressed as 
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nonlinear relation to be estimated. 
T

1 2( ) [ ( ), ( ), , ( )]mt x t x t x t=x   is the input vector, 
T

1 2( ) [ ( ), ( ), , ( )]pt y t y t y t= y is the output vector, un  

and yn  are the maximal lags in the input and output, 
respectively. 

One can use a neural network to estimate the 
input-output relation of a nonlinear MIMO system. In 
this paper, an RBFN will be adopted since it has a 
simple structure. When the Gaussian function is chosen 
as the radial basis function, an RBFN can be expressed 
in the form 

2

,
2

1 1

                        for  1, ,

ˆ
ˆ ( 1) exp( )

2

L L
i

j i ij ij
i i i

j p

y t G w w
σ= =

= ⋅ ⋅ ⋅

−
+ = = −∑ ∑

x m
 (2) 

where T

1 2
ˆ ˆ ˆ ˆ( ) [ ( ), ( ), , ( )]mt x t x t x t=x   is the input 

vector, T

1 2
ˆ ˆ ˆ ˆ( ) [ ( ), ( ), , ( )]pt y t y t y t=y   is the output 

vector, ijw  is the synaptic weight, iG  is the Gaussian 

function, im  and iσ  are the center and width of ,iG  
respectively, and L  is the number of the Gaussian 
functions, which is also equal to the number of hidden 
layer nodes. 

Given a set of training input-output pairs 
( ) ( )( , ),k kx y 1, 2, , ,k N=  where the identification 

problem of the nonlinear MIMO system is to determine 
the values of ,L  ,ijw  ,im  and ,iσ  to minimize the 
following performance index 
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where ( )ˆ ky  is the corresponding output of the RBFN 

when the input x̂  to the network is equal to ( ) .kx  
In usual cases, the initial values of ,L  ,ijw  ,im  

and iσ  are chosen first. Then a training algorithm is 
applied to the RBFN to search for the optimal 
combination of these values in an iterative manner. 
However, as mentioned above, there is no way to 
choose the initial values of ,L  ,ijw  ,im  and iσ  
systematically. Therefore, in the following section, an 
SVR approach will be proposed to serve for this 
purpose. 

 
III. INITIAL STRUCTURE OF RBFNS 

1. SVR-based method to determine ,L  ,im  and 

iσ  
The proposed SVR-based method can approximate an 

unknown function. Without loss of generality, an output 
of the RBFN, say 1 ,y  and its corresponding training 

pairs, ( ) ( )

1( , ),k kyx  1, 2, , ,k N=   will be used for 
demonstration. Meanwhile, assume that a set of basis 
functions, ( ),  1, 2, , ,lg l M=x   is given. Then the 
problem of function approximation is transformed into 
finding the parameters of the following basis linear 
expansion 
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where 1 2( , , , )Mθ θ θ= θ  is a parameter vector to 
be identified and b  is a constant to be determined.  

From Vapnik[1], one can find that the solution is to 
find ( , )f x θ  that minimizes 
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subject to the constraint 
 2 ,C<θ  (6) 

where ( )Lε ⋅  is the ε -insensitive loss function 
defined as 
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By using the Lagrange multiplier method, it was 
shown that the minimization of (5) leads a dual 
optimization problem[1]. 

In this paper, since the Gaussian function is used as 
the kernel function, (12) can be rewritten as 
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where lx  denotes support vectors (SVs), # SV  is 
the number of SVs. Comparing (8) with (2), # ,SV  ,l  

,lλ  and lx  in (8) can be regarded as the ,L   ,i  

1 ,iw  and im  in (2), respectively. From the above 
derivation, the number of hidden layer nodes ,L  the 
initial parameters 1 ,iw  ,im  and iσ  of the RBFNs 
can be determined. 

 
2. LSR-based method to determine the synaptic 

weights 

In the above section, the initial values of 

11 21 1, , , Lw w w  are determined. However, one still 

needs to determine the initial values of ,ijw  1 ,i L≤ ≤  
2 .j p≤ ≤  Based on the concept of LSR[2], these 
values can be determined by solving the following 
problem: 

Given ,L 11 21 1, , , ,Lw w w  ,im 1 ,i L≤ ≤  and 

,iσ 1 ,i L≤ ≤  determine ,ijw 1 ,i L≤ ≤  2 ,j p≤ ≤  
to minimize the following performance index 
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At first glance, this problem is very similar to the one 
in (3). However, since the values of ,L  

11 21 1, , , ,Lw w w  ,im 1 ,i L≤ ≤  and ,iσ 1 ,i L≤ ≤  are 
already given, this problem will be very easy to be 
solved based on the concept of LSR. 

 
IV. ANNEALING ROBUST LEARNING 

ALGORITHM FOR RBFNS 

In the training procedure of the proposed RBFN, the 
annealing concept[3] in the cost function of robust 
back-propagation learning algorithm[4] was adopted to 
overcome the existing problems in robust 
back-propagation learning algorithm. A cost function for 
the ARLA is defined here as 
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h  is the epoch number, ( ) ( )k

je h  is the error between 
the kth desired output and the kth output of the 
ARRBFN at epoch h  for the jth input-output training 
data in an MIMO system, ( )hβ  is a deterministic 
annealing schedule acting like the cut-off point, and 

( )ρ ⋅  is a logistic loss function defined as 
( ) 2
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[ ; ] ln 1
2
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k
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 for 1, 2, ,j p=   (12) 

Based on the gradient-descent kind of learning 
algorithms, the synaptic weights ijw , the centers im , 

and the widths iσ  of Gaussian functions are updated 
as 
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where η  is a learning constant, ( )ϕ ⋅  is usually 
called the influence function. In the ARLA, the 
annealing schedule ( )hβ  has the convergent 
properties [4]. 

 

V. SIMULATION RESULTS 

The identification scheme of a nonlinear MIMO 
system is depicted in Fig. 1. In this scheme, the training 
input-output data are obtained by feeding a signal ( )kx  
to the MIMO system and measure its corresponding 
output ( 1).k +y  Then subject to the same input signal, 
the objective of identification is to construct a suitable 
network model, which produces an output ˆ ( 1)k +y  to 
approximate ( 1)k +y  as closely as possible. 

( 1)k +y

( )kx
( 1)e k +

ˆ ( 1)k +y

 
Fig. 1 The proposed identification scheme for an 

MIMO system 
 
In this section, a two-input two-output nonlinear 

MIMO systems are used to verify the feasibility of the 
proposed approach. The root mean squares error 
(RMSE) of the testing data is used to measure the 
performance of the learning network and is defined as 
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1
ˆN k k

j jk
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where ( )k

jy  is the desired output and ( )ˆ k

jy  is the 
output of the ARRBFN. 
Example : 

In this example, the nonlinear MIMO system to be 
identified is described as[5] 
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where 

1 2

2 2
( ( ), ( )) (cos( ), sin( )) for   0 300

100 100

k k
x k x k k

π π
= ≤ ≤  

and the 301 training input-output data are generated by 
substituting into (18) sequentially. 

With the training data and following the procedure of 
the proposed method, the value of L  is found to be 15. 
Meanwhile, the initial values of ijw , im , and iσ  can 
also be determined. When applying the proposed SVR 
method, the parameters in (6) and (7) are chosen as 

1C =  and 0.2,ε =  respectively. After initialization, 
the ARLA is then applied to train the RBFN. After 1000 
epochs, the RMSE values of 1y  and 2y  are found to 
be 0.0102 and 0.0144, respectively. The details of the 
simulation results are shown in Fig. 2 through Fig. 7, 
respectively. 
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Fig.2 The desired output for 1y  
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Fig. 3 The final output for 1y  after 1000 epochs 
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Fig. 4 The plot of 1 1

ˆ( ) ( )y k y k−  after 1000 epochs 
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Fig. 5 The desired output for 2y  
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Fig. 6 The final output for 2y  after 1000 epochs 
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Fig. 7 The plot of 2 2

ˆ( ) ( )y k y k−  after 1000 epochs 
 

7. Conclusion 

With the integration of SVR, LSR, and the annealing 
robust algorithm, an RBFN is used for identification of 
an MIMO system. The proposed SVR approach has 
good performance in determining the number of hidden 
layer nodes and the initial parameters of the kernel. 
Then based on the values obtained by the SVR method, 
the synaptic weights can also be determined by using 
the technique of the LSR. After initialization, the 
annealing robust learning algorithm is adopted to adjust 
the parameters of the RBFN to approximate the MIMO 
system as closely as possible. The simulation results 
indicated that the proposed method can be used as a 
reliable technique for identification of nonlinear MIMO 
systems. 
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