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Abstract: A particle swarm optimization method with nonlinear time-varying evolution (PSO-NTVE) is employed in 
designing an optimal PID controller for asymptotical stabilization of a pendubot system. In the PSO-NTVE method, 
parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of 
experiments would have an effect that approximates the full factorial experiments. The PSO-NTVE method and other 
PSO methods are then applied to design an optimal PID controller in a pendubot system. Comparing the simulation 
results, the feasibility and the superiority of the PSO-NTVE are verified. 

Keywords: Particle swarm optimization, orthogonal array, nonlinear time-varying evolution, PID controllers, pendubot 
system. 

I. INTRODUCTION 
A pendubot is a two-link (two-degree-of-freedom) 

underactuated system and it includes two links rotating on 
two joints, in which the first link (shoulder) is actuated 
and the second link (elbow) is not actuated. This system is 
a simple underactuated mechanical system to permit 
complete dynamic analyses, but complex enough for 
investigating many advanced nonlinear control methods. 
Therefore, it is widely used as a benchmark in the study of 
underactuated systems [1-4]. 

In order to stabilize the pendubot to the unstablely 
inverted equilibrium position, a two-stage control strategy 
is always used. In the first stage, swing-up control is used 
to move the pendubot close to the equilibrium manifold. 
Then in the second stage, the swing-up controller is 
replaced by a balance controller for position control. 
Many methods such as the partial feedback linearization 
technique[1,2], the energy based controller[3], and the 
bang-bang controller[4] have been conducted for swing-up 
control of the pendubot. Once both links are swung up, the 
problem of balancing the pendubot about the unstable 
equilibrium was investigated. A linear quadratic regulator 
was proposed for the balance control[1,4]. Furthermore, the 
hybrid controller and the energy based controller[2,3] were 
presented. 

Particle swarm optimization (PSO) has evolved 
recently as an important branch of stochastic techniques 
to explore the search space for optimization[5]. Nowadays, 
PSO has been developed to be real competitors with other 
well-established techniques for evolutionary-based 
optimization methods[6-10]. In this paper, a PSO-NTVE 
method is employed in the designing of an optimal PID 

controller in a pendubot system since it can effectively 
deal with continuous nonlinear programming problems 
and generate high quality solutions. From the simulation 
results of the illustrative examples, the feasibility and the 
validity of the PSO-NTVE are verified. 

II. PSO-NTVE-BASED PID CONTROLLERS 
1. Review of some PSO methods 

In PSO algorithm, each particle keeps track of its own 
position and velocity in the problem space. The initial 
position and velocity of a particle are generated randomly. 
At each iteration, the new positions and velocities of the 
particles are updated using the following two equations: 

( 1) ( ) ( +1)i i iP k P k V k+ = +   for 1,  2, ,  i m=    (1) 
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where m  is the number of particles in a population, k  
is the number of current iteration, 

1c  and 2c  are 
acceleration coefficients, 1r  and 2r  are random 
numbers between 0 and 1, ( )iP k , ( )l

iP k , and ( )iV k  are 
the position, the local best, and the velocity of ith particle 
at iteration k , gP  is the global best of all particles. 

Since the introduction of the PSO method in 1995, 
researchers have put much effort to improve the original 
version of PSO. Shi and Eberhart[11] used a linearly 
varying inertia weight over iterations. The mathematical 
representations of this PSO method are given as shown in 
(1) and 
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where the acceleration coefficients 
1c  and 2c  are fixed, 

1r  and 
2r  are two random numbers. The inertia weight 

starts with a high value maxω  and linearly decreases to 

minω  at the maximal number of iterations. From hereafter, 
this PSO algorithm will be referred to as the time-varying 
inertia weight factor method (PSO-TVIW). 

Eberhart and Shi[12] found that the PSO-TVIW method 
is not very effective in tracking dynamic systems. 
Considering the dynamic nature of real-world 
applications, they proposed a random inertia weight factor 
to track dynamic systems. In their method, the 
representations are the same as those in the PSO-TVIW 
method except that the inertia weight factor changes 
randomly. In the rest of this paper, this algorithm will be 
referred to as the PSO-RANDW method. 

An automation strategy for the PSO with time- 
varying acceleration coefficients was proposed[13]. The 
objective is to enhance the global search in the early part 
of the optimization and to encourage the particles to 
converge toward the global optimum at the end of the 
search. In their method, the representations are the same 
as those in the PSO-TVIW method except that the 
acceleration coefficients change according to linear 
time-varying evolution. From hereafter, this algorithm 
will be referred to as the PSO-TVAC method. 

A time-varying nonlinear function modulated inertia 
weight adaptation was proposed by Chatterjee and 
Siarry[14]. In this method, the acceleration coefficients are 
also fixed. However, the inertia weight starts with a high 
value maxω  and nonlinearly decreases to minω  at the 
maximal number of iterations. This means that the 
representations are the same as those in the PSO-TVIW 
method except that the inertia weight factor changes 
according to 
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min max min
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where 
maxiter  is the maximal number of iterations and 

iter  is the current number of iterations. 

2. PSO-NTVE method based on orthogonal arrays 

In this section, based on the concept presented[13,14], a 
PSO-NTVE method is proposed. In the proposed PSO 
method, the inertia weight is given as described in (4). 
The gnitive parameter 

1c  starts with a high value 

1maxc and nonlinearly decreases to 
1minc . Meanwhile, the 

social parameter 2c  starts with a low value 2minc  and 
nonlinearly increases to 2 maxc . This means that the 
mathematical expressions are given as shown in (1), (4), 
and 
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where ,α  ,β  and γ  are constant coefficients.  
The proposed PSO method will encourage particles to 

wander through the entire search space, instead of 
clustering around a local optimum, during early iterations 
of the optimization. On the other hand, the algorithm will 
expedite convergence toward the global optimum during 
latter iterations. In this manner, the optimal solution 
should be obtained in a computation-efficient way. 

To determine the optimal combination of ,α  ,β  and 
γ , all combinations must be tested. For example, if it is 
assumed that ,α  ,β  and γ are all within the set 
{0.5, 1, 1.5, 2, 2.5}. Then there are 35  possible 
combinations for the values of ,α  ,β  and .γ  However, 
if ,α  ,β  and γ  have many possible values, then it may 
not be possible to perform the experiments of all 
combinations. An 6

25(5 )L  is an orthogonal array that can 
deal with at most six variables in five possible values with 
25 experiments[15,16]. Instead of 35  possible combin- 
ations, one only needs to perform 25 experiments to 
determine the optimal combination of ,α  ,β  and .γ  

3. PSO-NTVE tuning PID controllers 

In a PID control system, the time-domain form of a 
PID controller is usually expressed as 

1 1 1 1 1 1

2 2 2 2 2 2

( ) ( )  ( ) ( )

( )  ( ) ( )

P I D

P I D

u t K e t K e t dt K e t

K e t K e t dt K e t

= + +

+ + +

∫
∫




 (8) 

where ( )u t  is the control signal, 1( ),e t  2 ( )e t  and 

1( ),e t  2 ( )e t  are the error signals and their derivatives, 
and 1 1 2, , , P I DK K K  denote the proportional gain, the 
integral gain, and the derivative gain, respectively. In the 
PSO, a particle contains these gains. The optimal values 
of these gains are obtained by the PSO-NTVE method 
according to a defined fitness. 

III. A SIMULATION EXAMPLE 
1. Pendubot system 

The general dynamic model of underactuated 
mechanisms with m  actuated joints from a total of n  
joint can be expressed as follows[17] : 

( ) ( ,  ) ( )+ + =  M q q C q q q G q τ  (9) 

where nR∈q  is the position vector indicating link 
angles, ( )M q  denotes the n n×  inertia matrix, 

( ,  ) nR∈ C q q q  is the vector of damping, coriolis, and 
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centrifugal torques, ( ) nR∈G q  represents the 

gravitational term and nR∈τ  is the vector of control 
torque which has ( )n m−  zero components. For the 

pendubot system in Fig. 1, let 1m  and 2m  denote the 
distributed mass of the actuated link (link 1) and the 
unactuated link (link 2), respectively. Mean- while, let 1q  

and 2q , 1l  and 2l , 1cl  and 2cl , and 1I  and 2I  denote 
the angles, the lengths, the distances to the center of mass, 
the moments of inertia about their centroids of link 1 and 
link 2, respectively. 

Since the inertia matrix ( )M q  is positive definite for 
all q , the dynamics of the Pendubot in (10) can be 
written as 

1 ( )[ ( ,  ) ( )]−= −  q M q C q q q G qτ −  (10) 
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where 
 2 2 2

11 1 1 2 1 2 1 2 2 1 2( 2 cos )c c cM m l m l l l l q I I= + + + + +

 2

12 2 2 1 2 2 2( cos )c cM m l l l q I= + +  

 21 12M M= ,  2

22 2 2 2cM m l I= +  

 11 2 1 2 2 2sincC m l l q q= −   

 12 2 1 2 1 2 2( ) sincC m l l q q q= − +   

 21 2 1 2 1 2sinc dC m l l q q K= + , 22 dC K=  

 1 1 1 2 1 1 2 2 1 2( ) cos cos( )c cG m gl m gl q m gl q q= + + +

 2 2 2 1 2cos( )cG m gl q q= +  

where dK  denotes the damping coefficient. 
When the configuration is at equilibrium state; that is, 

pendubot balances at a state 0q =  and 0,q =  the 
following can be derived from (9). 

1 1 2 1 1 2 2 1 2 1( ) cos cos( )c cm gl m gl q m gl q q τ+ + + =  (12) 

2 2 1 2cos( ) 0cm gl q q+ =  (13) 
In the natural equilibriums of the pendubot, which means 

1 0τ = , the solutions of (12) and (13) can be  

1 2 ,q π= 2 0.q =  In this manner, both link 1 and link 2 
are in their upper positions. From the analysis, one can 
realize that the control of the pendubot system is not an 
easy task. Therefore, in the following sections, it will be 
shown how to design a PID controller to asymptotically 
drive the pendubot to the equilibrium state. 
2. Fitness 

In the time domain, the fitness function of a PID 
controller can include performance criteria such as the 

overshoot, the rise time, the settling time, and the 
steady-state error[18,19]. In general, the PID controller 
design method using the integrated absolute error (IAE), 
or the integral of squared-error (ISE), or the integrated of 
time-squared-error (ITSE) is often employed in control 
system designs. In this paper, the ITSE performance 
criterion is adopted to evaluate the PID controller. The 
performance criteria can be included in the same fitness 
as follows: 

2 2

1 2

1

[ ( ) ( )]
f

t e t e t dt
=

+∫
  (14) 

From the definition (16), the fitness value can be 
calculated to evaluate the performance of the PID 
controller and a higher fitness value denotes a better 
performance. 

IV. SIMULATION RESULTS 
The parameters of the pendubot system shown in Fig. 1 

are chosen as 1 2 1  2.0 kg, 1.5 kg, 0.3 m,m m l= = =     

2 0.5 m,l = 1 0.15 m,cl = 2 0.25 m,cl = 29.8 m/s .g =  
The initial state and the desired final state of the pendubot 
system are 1 1 2 2[ , , , ] [ 2 ,  0,  0,  0]q q q q π= −   and 

1 1 2 2[ , , , ] [ 2 ,  0,  0,  0].q q q q π=   Meanwhile, the input 
torque ( )tτ  of the motor is assumed to be within the 
range [ 8 Nm, 8 Nm]− . 

In the proposed algorithm, the population size and the 
maximal iteration number are chosen to be 40, 10000, 
respectively. Moreover, the particles in PSO methods are 
all chosen as real numbers in the range [ 10, 10]− . In the 
proposed PSO-NTVE method, the values of ,α  ,β  and 
γ in (4), (6), and (7) are 0.5, 1.0, and 2.5 determined by 
experiments of orthogonal arrays. The average values of 
the optima PID gains and fitness for 20 trials are shown in 
Table 1. 
  From the results, it is clear that most considered in this 
paper are competitive in finding the optimal solution. 
Hoever, the performance of PSO-NTVE was found to be 
relatively better than other PSO methods in finding the 
optimal PID gains. 

1q

2q

x

y

1l

2l

1τ

  
Fig. 1. Dynamics of the pendubot system 
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V. CONCLUSION 
A PSO-NTVE method is presented in the designing of 

an optimal PID controller for a pendubot system. An 
orthogonal array is adopted to determine the parameters 
of the proposed PSO method. Then, this PSO-NTVE 

method is applied to design an optimal PID controller for 
asymptotically stabilizing the pendubot system. The 
simulation results verify the feasibility and the validity of 
the proposed PSO-NTVE method in the design of an 
optimal PID controller of a pendubot system.

 

 
PID gains 

PSO method 
1PK  1IK  1DK  2PK  2IK  2DK  

Fitness(x10-2)

PSO-TVIW 1.373742 -0.521886 -1.959868 -9.999187 -0.207341 -2.865347 8.638798 

PSO-RANDW 0.151508 0.063432 -8.694078 -9.991733 0.014415 -9.999336 8.588553 

PSO-TVAC 0.912552 -0.760333 -2.479824 -9.999038 -0.307233 -3.409042 8.638881 

PSO-NTVE 1.751383 -0.103256 -3.467748 -9.227502 -0.045068 -4.446959 8.765612 
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