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Abstract In this paper a brief review on the observability and estimability analysis of GPS/INS is presented. 
There have been various analysis results on the observability of INS errors. However different INS error 
dynamics models and reference frames of INS mechanization have been used in the observability analysis. 
Moreover, the analysis framework was not unique. In this paper, known observability analysis results are 
summarized first. Then relatively general analysis tools to handle system model perturbation on the 
observability and estimability is given. 
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1. Introduction 

 
The observability of measurement systems has 

been studied to understand the behavior of error 
estimators in the aided inertial navigation systems 
(INS) [1, 2, 3, 4, 5]. For the observability study of 
INS, error covariance matrices or observability 
matrices have usually been investigated. Error 
covariance has been considered to be related to the 
degree of observability in the Kalman filter 
applications [6]. The error covariance test is also an 
efficient means of statistical study on the behavior of 
estimators [7]. In the analytic studies, the rank of the 
observability matrix was mainly investigated [3, 8, 9, 
10 , 11 , 12 ]. Analytical approaches to the 

observability study provide insights on the estimator 
behavior in a more systematic way. 

In the error covariance test, error covariance 
matrices are considered to give useful information on 
the degree of observability. However, the behavior of 
error covariance can be sensitive to the initial error 
covariance and the relation between the observability 
and the error covariance can be misleading [13]. On 
the other hand, in the rank test on the observability 
matrix, the rank does not provide the degree of 
observability. It only decides if a system is observable 
or not. In addition, the rank of a matrix can be 
sensitive to perturbation. Moreover, it is usually quite 
difficult to decide the rank of an observability matrix 
analytically except for very simple system models [3, 
9, 10, 11, 12]. To study the degree of observability 
analytically, several measures of observability have 
been proposed. Frequency domain observability 
measures for time invariant systems were suggested in 
[14, 15]. The condition number of the observability 

matrix for single-output time-varying systems was 
considered as a measure of observability in [ 16 ]. 
However, these measures are not suitable for time-
varying multi-input/multi-output systems. In this 
paper, observability measures are considered for a 
wider class of systems. 

Measures of observability for a wider class of 
systems were introduced to study the degree of 
observability in [17]. The measure indicates how far, 
in the sense of 2-norm, the information matrix is from 
rank-deficient matrices. The measures are less 
sensitive to perturbation and applicable to time-
varying multi-input/multi-output systems. 

The concept of estimability was introduced to 
characterize the behavior of state estimation in [18]. 
Estimability measures were also introduced to  
indicate the ratio of error covariance decrease to the 
initial error covariance in [17]. It was shown that the 
sensitivity of the measures to perturbation depends on 
the size of initial error covariance. 

 
2. Observability Analysis of GPS/INS 

 
An INS consists of 3-axis accelerometers, 3-axis 

gyros, and a computer. The computer calculates 
position, velocity, and attitude by integrating the 
inertial sensor measurements. Due to the initial errors 
and sensor measurement uncertainty, the results of 
computer calculation contain errors that grow as time 
elapses. 

If a position or velocity measurement is taken, 
some of the errors can be eliminated or estimated. The 
error that can be estimated depends upon the motion 
of a vehicle in which the INS is installed. The effect of 
the measurement on the navigation state error 
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estimation has usually been studied with the behavior 
of error covariance matrix in the Kalman filter [6]. 

The first control theoretic study on the 
observability analysis on the INS errors was attempted 
by an piece-wise constant systems modeling in [3]. 
For the vehicle that moves with a constant speed on 
the horizontal plane with velocity measurement, the 
paper showed that the three components of attitude are 
unobservable. The paper also showed that the 
components of errors in attitude and gyro bias that are 
orthogonal to the direction of the acceleration change 
are made observable. 

A more detailed observability analysis on the aided 
INS is given in [11]. In the paper, estimation of INS 
errors and the lever arm between the inertial sensors 
and the GPS antenna is studied with a simplified INS 
error dynamics model. For a vehicle with the 
horizontal constant speed motion, it is shown that the 
attitude as well as the lever and the vertical 
component of gyro bias are unobservable. It is also 
shown that acceleration changes enhance the estimates 
of attitude and gyro bias. The components of errors in 
attitude and gyro bias that are orthogonal to the 
direction of the acceleration change are made 
observable. The changes in angular rate also improve 
the estimate of the lever arm. 

The vertical component of gyro bias is known to 
be nearly unobservable or weakly observable from 
experiences. It is interesting to note that the 
observability analysis with the simplified INS error 
dynamics model in [11] confirms the experience. 
However, in the observability study with relatively 
exact INS error dynamics model [3], the vertical 
component of gyro bias is observable. 

 
3. Observability and Estimability Measures 

 
In this section, observability and estimability 

measures and their properties in [17, 19 ] are 
introduced. With the measures, sensitivity of 
observability and estimability to perturbation in the 
system model can be analyzed. The influence of the 
initial error covariance on the error covariance is 
studied in detail.  

Consider the following system: 
 ,0 0i ix x= Φ    (1) 
 i i i iy H x v= +    (2) 

where  is the state vector at the time step i, 
 is the initial state vector,  is the 

state transition matrix from the time step 0 to the time 
step i,  is the measurement vector at the time 
step i,  is the measurement noise vector at the 
time step i, and  is the measurement matrix 
at the time step i. Assume that 

n
ix ∈\

0
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( )0 0 , 0x N x P∼ with 
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 for , and  for all i. The 
optimal estimation problem considered in this section 
is as follows: Given a set of measurements 

0 0P > (0,iv N R∼ )i 0iR > 1,  2,  i = "
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The above weighted-least-squares estimate is identical 
to the conditional expected-value estimate that is also 
the minimum variance or maximum-likelihood 
estimate [20,21]. The optimal estimate is given as  

( ) ( )11
0, 0 0, 0, 0 0ˆ k k k

1x P L K P x
−−= + + −

i

  (3) 
with  

1 1
0, ,0 ,0 0, ,0

0 0

,
k k

T T T T
k i i i i i k i i i

i i

L H R H K H R y− −

= =

= Φ Φ = Φ∑ ∑   (4) 

where  is the observability gramian or 
information matrix. Note that if the measurements do 
not have noise, then the system is deterministic and 
the corresponding observability gramian is 

0,kL

 0, ,0 ,0
0

k
T T

k i i i
i

H H
=

i= Φ Φ∑L    (5) 

Thus, observability gramians for stochastic and 
deterministic systems differ only in scaling due to . 
Therefore, a stochastic system is observable if and 
only if the corresponding deterministic system is 
observable. The above stochastic system is observable 
on [0,k] if and only if  [

iR

0, 0kL > 22]. If the system is 
unobservable, then a vector ux , called an 
unobservable state, exists such that 0, 0k uL x = . The 
null space of  is called the unobservable subspace. 0,kL

Let 0, 0, 0ˆk kx x x= −� . Then, the error covariance 
matrix is defined as 

0, 0, 0,
T

k kP E x x⎡⎣ � �� k ⎤⎦

k

   (6) 
Then, we have 

( ) 1 1
0, 0 0,kP P L

− −= +   (7) 
Since  

( )( ) 1
0 0, 0 0, 0,k kP P P P L−− = k

)
  (8) 

the null spaces for  and  can be 
different. Thus, the error covariance of an 
unobservable state can experience a decrease 

0,kL ( 0 0,kP P−

For the observability study, consider the following 
measure for , ,r sM r s×Δ∈ ≥\  : 

 ( )
( ) 2
min

rank M s
Mμ

−Δ <
Δ�    (9) 

It indicates the magnitude of the smallest perturbation 
in M that makes M rank-deficient. For a matrix 

r sM ×∈\  with , r s≥ ( ) ( ) ( )1 1, , , sM M Mσ σ σ"  
denote the singular values of M such that 

( ) ( ) ( )1 2 0sM M Mσ σ σ≥ ≥ ≥" ≥ . Let ( )σ i  and 

( )σ i be the largest and the smallest singular values of 
a matrix, respectively. Then the following theorem 
essentially comes from Theorem 2.5.3 in [23]: 
Theorem 1: Let ,r sM r s×∈ ≥\  . Then ( ) ( )M Mμ σ= . 
It is well-known that singular values of a matrix are 
well-conditioned to perturbation such that 

 ( ) ( ) ( )i iM E Mσ σ+ − ≤ Eσ   (10) 
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for , and 1,2, ,i s= " r sE ×∈\ [23,24] So, if we define 
an observability measure for a system with ( )0,kLμ , 

then ( 0,kLσ )  indicates how far the system is from the 
rank-deficient matrices. The measure is less sensitive 
to perturbation due to errors in the system model or 
the numerical computation. 

In many estimation applications, the measure of 
observability for a subspace can be quite convenient 
to predict or understand the behavior of the subspace 
of the state-space. For this purpose, the following 
norm can be useful to define the measure: 

 ( )
( ) 20

, min
M z

M zμ
−Δ =

Δ�   (11) 

where , ,r sM r s×Δ∈ ≥\   and sz∈\ . With the 
definition, we have the following theorems: 
Theorem 2: Let with , ,r s sM r s z×∈ ≥ ∈\ \  

2
1z = . 

Then 
 ( ) 2

,M z Mzμ =   (12) 
Proof: See [17]. 
Theorem 3: Let , ,r sM E r×∈\  s≥  and sz∈\  with 

2
1z = . Then, 

 ( ) ( ) ( ), ,M E z M z Eμ μ+ − ≤σ  (13) 
Proof: See [17] 
Theorem 3 shows that ( ),M zμ  is also well-
conditioned to the perturbation in M.  

The other observability measure can be defined 
with ( 0, ,k )L zμ . This measure indicates the magnitude 
of the smallest perturbation in the information matrix 
that makes the subspace spanned by the vector z 
unobservable. Let the singular value decomposition 
(SVD) of  be  where 0,kL T

k k kU UΣ [ ]1 2k nU u u u= "  is 
an orthogonal matrix composed of singular vectors 
and ( 1 2, , ,k diag )nσ σ σΣ = "  is a diagonal matrix 
whose diagonal elements are the singular values of 

 such that 0,kL 1 2 0nσ σ σ≥ ≥ ≥ ≥" . Since 

( )0, 2
, T

k k kL z U zμ = Σ , 

( ) (0, 0,,k i i kL u Lμ σ= )   (14) 
Therefore, a singular value of the information matrix 
can be considered as the measure of observability for 
the subspace spanned by the corresponding singular 
vector. A large singular value implies that a large 
change in the information matrix is necessary to make 
the subspace spanned by the corresponding singular 
vector unobservable. It is apparent that the system 
observability measure is the smallest subspace 
observability measure over the whole state-space. 
Thus, we have the following relation: 

 ( ) ( )0, 0,min ,
nk

z
L Lμ μ

∈
=

\
k z   (15) 

In estimation applications, the behavior of the 
error covariance is one of the main concerns of 
estimator designers. To characterize estimator 
performance, the term ‘estimability’ will be used. A 
system is called estimable if . The null 
space of  is referred to as an unestimable 
subspace. Then, a measure of estimability for a 

subspace may be defined with  

0 0, 0kP P− >

0 0,kP P−

( ) ( )0 0,
0, 0

0

, ,
T

k
k T

u P P u
L P u

u P u
ν

−
=   (16) 

for . It indicates the ratio of the decrease in the 
error covariance of a state in the direction of u to the 
initial error covariance of the same state. The concept 
of estimability that is used in this paper is similar to 
that in [

nu∈\

18]. However, estimability in [18] is 
concerned with the error covariance rather than the 
initial error covariance. The connection between the 
observability and estimability can be found in (8). 
From this equation it can be shown that a system is 
observable if and only if the system is estimable. If the 
span of a vector u is unobservable, then { }1

0span P u−  
is unestimable. Then, the following theorem shows the 
the estimability measure is less sensitive to 
perturbation in the information matrix if the 
magnitude of the initial error covariance matrix is not 
excessively large: 
Theorem 4: Let n nE ×∈\ , ( ) ( )0, 01 kr Lσ σ+� P  

( )Eσ> , and . Then, nu∈\

( ) ( ) ( ) ( )
( )( )

0
0, 0 0, 0, , , ,k k

E P
L E P u L P u

r r E
σ σ

ν ν
σ

+ − ≤
−

   (17) 

Proof: See [19]. 
Let the SVD of 0 0, 0kP L P  be T

pl pl plU UΣ  where plΣ  

is ( ),1 ,2 ,diag , , ,pl pl pl nσ σ σ"  and ,1 ,2 ,pl pl pl pl nU u u u⎡ ⎤= ⎣ ⎦" . 

Let ( ), , ,1 ,  i=1,2, ,pl i pl i pl id nσ σ= + " . Then, 

 ( ) 0
0, 0

0

, ,
T T

pl pl pl
k T

u P U D U P u
L P u

u P u
ν = 0     (18) 

where ( ),1 ,2 ,diag , , ,pl pl plD d d d= " pl n . Thus, SVD of 

0 0, 0kP L P  gives useful information on the 
estimability measure. 
 

4. Conclusions 
 

The exact model of INS error dynamics is 
nonlinear and highly complicated. Observability study 
of GPS/INS usually involves simplification of the INS 
error model. The observability analysis by rank test is 
sensitive to the system model perturbation. 
Observability anaysis of GPS/INS by covariance 
analysis can be statistically convenient. However, the 
error covariance behavior is highly influenced by the 
choice of initial error covariance and can give 
misleading results on the observability. 

With the proposed observability and estimability 
measures, a straight forward analysis on the 
characteristics of the observability and estimability of 
GPS/INS error is possible. The observability analysis 
results are insensitive to system model perturbation. 
The estimability measures show that the sensitivity of 
error covariance to system model perturbation can be 
influenced by the choice of the initial error covariance. 

 
Acknowledgement 

 

 

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 37



  
This work was supported by the Korea Science and 

Engineering Foundation through the Advances Ship 
Engineering Research Center and the brain Korea 21 
Project at Pusan National University 

 
Reference 

 
[1] A. A. Sutherland Jr., “The Kalman filter in 

transfer alignment of inertial guidance systems,” 
Journal of Spacecraft and Rockets, Vol. 5, 1968, 
pp. 1175-1180. 

[ 2 ] I. Y. Bar-Itzhack and B. Porat, “Azimuth 
observability enhancement during inertial 
navigation system in-flight alignment,” Journal 
of Guidance and Control, Vol. 3, 1981, pp. 337-
344. 

[ 3 ] D. Goshen-Meskin and I. Y. Bar-Itzhack, 
“Observability analysis of piece-wise constant 
systems-Part II: Application to inertial navigation 
In-Flight Alignment,” IEEE Transactions on 
Aerospace and Electronic Systems, Vol. 28, No. 4, 
1992, pp. 1068-1075. 

[4] S. Hong, M. H. Lee, S. H. Kwon, and H. H. Chun, 
“A Car Tests for the Estimation of GPS/INS 
Alignment Errors,” IEEE Transactions on 
Intelligent Transportation Systems, Vol. 5, No. 3, 
2004, pp. 208-218. 

[5] S. Hong, M. H. Lee, H. H. Chun, S. H. Kwon, 
and Jason L. Speyer, “Experimental Study on the 
Estimation of Lever Arm in GPS/INS,” IEEE 
Transactions on Vehicular Technology, Vol. 55, 
No. 2, 2006, pp.431-448. 

[6] F. M. Ham and R. G. Brown, “Observability, 
Eigenvalues, and Kalman Filtering,” IEEE 
Transactions on Aerospace and Electronic 
Systems, Vol. 19, No. 2, 1983, pp. 269-273. 

[7] P. S. Maybeck, Stochastic Models, Estimation, 
and Control, Vol. I . New York, Academic Press, 
1979. 

[8] I. Y. Bar-Itzhack and N. Berman, “Control T
heoretic Approach to Inertial Navigation Syste
ms,” Journal of Guidance and Control, Vol. 
11, No. 3, 1988, pp. 237-245. 

[9] Y. F. Jiang and Y. P. Lin, “Error Estimation of INS 
Ground Alignment Through Observability 
Analysis,” IEEE Transactions on Aerospace and 
Electronic Systems, Vol. 28, No. 1, 1992, pp. 92-
97. 

[10] S. Hong, M. H. Lee, J. A. Rios, and J. L. Speyer, 
“Observability Analysis of INS with a GPS 
Multi-Antenna System,” International Journal of 
the Korean Society of Mechanical Engineers 
(KSME), Vol. 16, No. 11, 2002, pp. 1367-1378. 

[11] S. Hong, M. H. Lee, H. H. Chun, S. H. Kwon, 

and J. L. Speyer, “Observability of Error States 
in GPS/INS Integration,” IEEE Transactions on 
Vehicular Technology, Vol. 54, No. 2, 2005, 
pp.731-743. 

[12] M. K. Lee, S. Hong, M. H. Lee, S. H. Kwon, 
and H. H. Chun, “Observability Analysis of 
Alignment Errors in GPS/INS,” Journal of 
Mechanical Science and Technology (KSME 
international Journal), Vol. 19, No. 6, 2005, pp. 
1253-1267. 

[13] S. Hong and H. H. Chun, “Singular Value 
Decomposition Approach to Observability 
Analysis of GPS/INS,” Proc. of IAIN/GNSS 2006, 
Jeju, Korea, October 18-20, 2006, pp. 133-138. 

[ 14 ] D. K. Lindner, J. Babendreier, and A. M. 
Hamdan, “Measures of Controllability and 
Observability and Residues,” IEEE Transactions 
on Automatic Control, Vol. 34, No. 6, June 1989, 
pp.648-650. 

[ 15 ] M. Tarokh, “Measures for Controllability, 
Observability, and Fixed Modes,” IEEE 
Transactions on Automatic Control, Vol. 37, No. 
8, August 1992, pp.1268-1273. 

[ 16 ] Z. Chen, “Local Observability and Its 
Application to Multiple Measurement 
Estimation,” IEEE transactions on Industrial 
Electronics, Vol. 38, No. 6, December 1991, pp. 
491-496. 

[17] S. Hong, H. H. Chun, S. H. Kwon, and M. H. Lee, 
“Observability Measures and Their Application to 
GPS/INS,” IEEE Transactions on Vehicular 
Technology, Vol. 57, No. 1, 2008, pp.97-106. 

[18] Y. Baram and T. Kailath, “Estimability and 
Regulability of Linear Systems,” IEEE 
Transactions on Automatic Control, Vol. 33, No. 
12, December 1988, pp.1116-1121. 

[19] J. H. Moon, S. Hong, H. H. Chun, and M. H. Lee, 
“Estimability Measures and Their Application to 
GPS/INS,” Journal of Mechanical Science and 
Technology, Vol. 22, 2008, pp.905-913. 

[ 20 ] A. H. Jazwinski, Stochastic Process and 
Filtering Theory, Academic Press, New York, 
1970. 

[21] A. E. Bryson, Jr., and Y.-C. Ho, Applied Optimal 
Control, Hemisphere Publishing Co., Washington, 
1975. 

[22] F. M. Callier and C. A. Desoer, Linear System 
Theory, Springer-Verlag, New York, 1991. 

[ 23 ] G. H. Golub and C. F. Van Loan, Matrix 
Computations, 3rd Ed., The Johns Hopkins 
University Press, Baltimore and London, 1996. 

[24] G. W. Stewart, Introduction to Matrix 
Computations, Academic Press Inc, Orlando, 1973. 

 

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 38




