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Abstract
Evolvable Hardware (EHW) is a new research field

about the use of Genetic Algorithm (GA) to synthesize an
optimal circuit. In traditional GA, the tournament selec-
tion for crossover and mutation is based on fitness of in-
dividuals. It can make convergence easily, but maybe lose
some useful genes. In selection, besides fitness, we con-
sider the different structure from individuals comparing to
elite one. First, select some individuals with more different
structures, then cross over and mutate these ones to gen-
erate new individuals. By this way, GA can increase di-
versification to searching spaces, so that it can find better
solution. We propose optimal circuit design by using GA
with different structure selection (GAdss) and with fitness
function composed of circuit complexity, power and signal
delay. Its effectiveness is shown by simulations. From the
results, we can see that the best elite fitness, the average
value of fitness of correct circuits and the number of cor-
rect circuits of GAdss are better than GA. The best case
of optimal circuits generated by GAdss is 8.1% better in
evaluating value than the circuit of GA.
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1 Introduction

In artificial intelligence, Evolutionary Algorithm (EA)
is a generic population-based heuristic optimization algo-
rithm. It uses some mechanisms inspired by biological
evolution: selection, crossover, mutation and reproduction.
Genetic Algorithm (GA) [1][2] is one of the typical evolu-
tionary algorithms.

In traditional GA, the tournament selection for
crossover and mutation is based on fitness of individuals.
It can make convergence easily, but maybe lose some use-
ful genes. In tournament selection, besides fitness, we con-
sider the different structure from individuals comparing to

elite one, because the offspring with more different struc-
ture can enhance diversification to searching spaces. The
value of different structure is defined by the sum of abso-
lute value of difference of genes between two individuals.
First, select some individuals with more different struc-
tures, then cross over and mutate these ones to generate
new individuals. By this way, GA can increase diversifica-
tion to searching spaces, so that it can find better solution.

While GA technologies are developed, Evolvable Hard-
ware Systems (EHW) [3][4] is researched, inspired by the
Evolution theory. EHW was first proposed in the early
1990s’ for hardware design. It is classified into two cat-
egories: original design and adaptive systems. Original de-
sign uses EA to design a system that meets a predefined
specification, and adaptive systems reconfigure an exist-
ing design to adapt to a variable operational environment.
EHW can be used as an alternative to conventional hard-
ware design methodology. The application of the EHW
technique appears to be successful and promising, because
it could automatically generate digital circuits by using EA.
However, there still remain critical issues such as scalabil-
ity, maintainability and generalization [5][6] to apply EHW
for practical design problems. One of them is a circuit de-
sign optimization problem, where mixed design constraints
are subjected.

In this paper, we propose a new approach for circuit de-
sign optimization by GA with Different Structure Selection
(GAdss), where mixed constraints on circuit complexity,
power and signal delay are considered. First, we introduce
the evaluating value about correctness, complexity, power
and signal delay to the fitness function in order to get an
optimal circuit. The fitness function used in the experi-
ments aims at accepting solutions with 100% correctness
of the target circuit, and with maximal evaluating values
about complexity, power and signal delay. Then GAdss
can autonomously synthesize a circuit that is equivalent to
a conventional design in functionality, but is simpler and
has better performance. As a result, GAdss can find a bet-
ter circuit, compared to GA. To verify an effectiveness of
our approach, a simple 2-bit half adder circuit is experi-

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 218



Initial populations of candidate solutions

Calculate all candidate fitness

Elite selection

Desired solution?

End

By crossover, mutation,
and replacement to

create new generations

no

yes

Figure 1: The evolutionary process of GA.

mentally synthesized.
In the next section, a brief overview of GAdss is de-

scribed. Section 3 describes the use of GAdss as a new
approach for the automatic design of an optimized circuit.
Section 4 shows experiments on a 2-bit half adder circuit
design as an example. Finally, the paper concludes with a
summary of the results in section 5.

2 Genetic Algorithm with different structure
selection

2.1 Genetic Algorithm

GA is a search technique used to find exact or approxi-
mate solutions to optimization and search problems. Figure
1 shows a graphical representation of the GA mechanisms.
GA involves a search from a population of individuals.

In the initialization of a GA population, each individ-
ual is randomly generated. In the evaluation, GA evalu-
ates each candidate according to a fitness function, which
indicates how well a candidate satisfies the design speci-
fication. In each generation, the elite individuals are pre-
served and the rest of the individuals are replaced by the
new ones generated by crossover and mutation. GA con-
tinues to evolve until it finds the best individual.

2.2 Genetic Algorithm with different structure
selection

In traditional GA, elite selection and tournament selec-
tion are based on the fitness of individuals. This is good
for GA to find the local best solution, but it maybe pre-
mature convergence. To avoid premature convergence, we
consider the different structure of individuals compared to
elite one. The value of different structure is defined by

population at t-th generation

population at (t+1)-th generation
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based on different
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Figure 2: The reproduction of GAdss.

the sum of absolute value of difference of genes between
two individuals. We select some individuals with different
structure to do crossover and mutation, to generate some
new individuals to the next populations. This method can
extend diversification to search spaces, so can be fond a
better solution.

Figure 2 shows a graphical representation of the repro-
duction of GAdss. In each generation, the elite individuals
are preserved. In selecting some individuals, half of them
are processed by tournament selection based on fitness, and
another half are processed by tournament selection based
on different structure. Then crossover and mutation are
performed to create new ones for next generation.

< Crossover >

The crossover is operated between two parents, and
two new individuals are generated. The procedure of the
crossover is as follows.

(1) Select two individuals as parents using tournament
selection. (2) Some bits in the parents are selected as the
crossover bits with the probability of Pc. (3) Two parents
exchange the corresponding selected bits with each other.
(4) The two new individuals become the individuals of the
next generation.

< Mutation >

Mutation is executed in one parent and a new individual
is generated. The procedure of mutation is as follows.

(1) Select one individual as a parent using tournament
selection. (2) Some bits are selected with the probability of
Pm. The selected bits are changed randomly and the new
individual is generated. (3) The new individual becomes
the individual of the next generation.

Here, tournament selection runs a “tournament” among
two individuals chosen at randomly from the population,
and selects the winner which with the better fitness or has
more different structure.
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Figure 3: An initial 4*4 array with the input/output func-
tionality for a 2-bit half adder.

3 Circuit Design Optimization using GAdss

3.1 Objective

The overall objective is to discover new and novel solu-
tions by the application of GA in the circuit design process.
The target circuit has to provide identical functional behav-
ior equivalent to the specification but require less complex-
ity, less power and less signal delay.

In this section, we will demonstrate the principle of
GAdss in the design process using a 2-bit half adder as a
sample logic circuit.

3.2 Genetic encoding

To process a genetic encoding easily, the logic circuit
under consideration is assumed to be organized on a two di-
mensional array of cells, which was proposed in [3]. Each
cell accepts two inputs and produces one output. The cells
in the first column of the array are set with predefined in-
puts. For the purpose of this experiment, the combinatorial
circuit takes four primary inputs. Therefore there are 16 in-
put patterns of the circuit. Cells in the following columns
receive outputs from cells in the previous columns. The
chromosome is a string of integers where each three contin-
uous genes embody a cell. Each triplet in the chromosome
encodes the two inputs and the type of a cell respectively.
In this experiment, the last cell is not used, so the chromo-
some length is calculated by the following formula:

3 ∗ ((numberofcolumns) ∗ (numberofrows)− 1). (1)

In the experiment, the array is a fixed size of 4*4 cells
(shown in Figure 3), thus the length of the chromosome is
45 (3 ∗ (4 ∗ 4 − 1)). The inputs of each cell in the first
column of the array can take the value of any integer in the
range of [0 to (max number inputs − 1)]. Cells in all
other columns can take any integer value in the range of [0
to ((now column− 1) ∗ (numberofrows)− 1)]. As for
the third gene in the triplet, cell type is defined as shown in
Table 1, which was proposed in [7].

A typical chromosome then can be a sequence of triplets
such as:

Table 1: Information of cells

CTa LFb GCc ECd power EPe GSDf ESDg

0 NAND 4 6 3 7 4 6
1 NOR 4 6 3 7 4 6
2 XNOR 8 2 4 6 6 4
3 NOT(in1) 2 8 2 8 3 7
4 NOT(in2) 2 8 2 8 3 7
5 WIRE(in1) 0 10 6 4 8 2
6 WIRE(in2) 0 10 6 4 8 2
7 AND 6 4 5 5 7 3
8 OR 6 4 5 5 7 3
9 XOR 8 2 4 6 6 4
- (not used) 0 20 0 20 0 20

acell type
blogical function
cgate complexity
devaluating gate complexity
eevaluating gate power
fgate signal delay
gevaluating gate signal delay

([0-X],[0-X],[0-9])...([0-X],[0-X],[0-9]).
Here, X is 3 in the first four cells (in the first column);

X is ((now column − 1) ∗ 4 − 1) in the other columns,
now column is the number of (2,3,4) column where the
cell is placed.

3.3 Fitness Function

The fitness function in this experiment aims to accept
solutions with 100% correctness of the target circuit, and
with maximal evaluating values about complexity, power
and signal delay. We use two functions F1 and F2. The
former is a ratio of correct outputs to all test data, and the
latter is an evaluating function of circuit complexity, power
and signal delay. The following shows how the fitness of
individuals is calculated, which was proposed in [7]:

F1 =
num rightout ∗ 100

num testdata
. (2)

• num rightout : the number of correct outputs from
circuit individuals.

• num testdata : the number of all test data.

F2 = (
∑

i∈N

ecvi) ∗ αc + (
∑

i∈N

epvi) ∗ αp

+(
∑

j∈Cols

( min
k∈Rows

edvjk)) ∗ αd. (3)
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• ecvi : evaluating complexity value of cell i.

• epvi : evaluating power value of cell i.

• edvj,k : evaluating signal delay value of cell in col-
umn j and row k in an array.

• ac : the coefficient about complexity (set to 1 here).

• ap : the coefficient about power (set to 1 here).

• ad: the coefficient about signal delay (set to 1 here).

• N : the number of all the cells.

• Cols : all the columns of the array.

• Rows : all the rows of the array.

Fitness =
{

F1, if(F1 < 100)
F1 + F2, otherwise.

(4)

The first part F1 of the fitness function compares the
output response of the evolved circuit with the desired ones
from truth table. If all matching, then the fitness value for
the correctness is 100. The second fitness F2 searches for
the most optimum solution in terms of complexity, power
and signal delay. This is done by designating gates with
different evaluating values about complexity, power and
signal delay (shown in Table 1).

In order to judge the difference of the complexity, power
and signal delay between different gates, we assign values
about complexity, power and signal delay to each gates.
In the evolution of GA, the larger the fitness is, the better
the circuit is. So we use evaluating values about complex-
ity, power and signal delay in fitness function. In Table 1,
“GC” is the complexity about CMOS circuit of one gate,
“EC” equals to (10 − GC). “power” is the value about
power of one gate, “EP” equals to (10−power). “GSD” is
the value about signal delay of one gate, and “ESD” equals
to (10 − GSD). When a cell is not used in a circuit, then
its evaluating values are set to 20.

4 Experiments

This experiment aims to verify circuit optimization by
GAdss. Table 2 shows the parameters of the evolution
of GAdss. There is no fixed method to define the num-
ber of generations, population size, crossover probability
and mutation probability. Therefore some preliminary ex-
periments were performed in advance to decide parameters
suitable for our experiment.

Table 2: Conditions for evolution

Number of Generation : 500
Population Size : 1210
Elite Size : 10
Crossover Size : 600
Mutation Size : 600
Crossover Probability (Pc) : 0.2, 0.5
Mutation Probability (Pm) : 0.023

Table 3: The results of different GA

item GA(0.2)a GAdss(0.2)b GA(0.5)c GAdss(0.5)d

best 447 465 471 501
quality - 5.2% - 8.1%
average 428.4 438 464.4 500.4
quantity 3 7 14 16
time(m) 19 19 25 25

aGA with (Pc : 0.2)
bGAdss with (Pc : 0.2)
cGA with (Pc : 0.5)
dGAdss with (Pc : 0.5)

The proposed method has been implemented in Eclipse
SDK 3.1.1 with jre 1.6.0; and tested on a PC with Inter(R)
Core(TM)2 CPU at 2.67GHz and 2.0GB RAM.

Table 3 shows the results of different GA. For each GA,
we select the successful results over 60 independent tri-
als. In Table 3, “best” means the best elite fitness value;
“quality” the percent of better in evaluating value of best
individual compared to one of GA; “average” the average
fitness value of top three individuals; “quality” the number
of correct individuals over 60 independent trials; “time” the
running time of 60 trials.

From the results, we can see that the best elite fitness,
the average fitness value of top three correct circuits, and
the number of correct circuits of GAdss are better than GA.
Compared to GA, GAdss consider the different structure
from individuals comparing to elite one, then it can en-
hance diversification to searching spaces, so that it can find
better solution.

In the experiments, the optimized circuit with fitness
501 was obtained by the GAdss (Pc:0.5). This chromo-
some is as follows:

(0,2,2)(0,2,7)(1,3,1)(1,3,2)(3,2,5)(0,0,5)(3,0,5)(1,3,1)
(1,6,9)(4,2,6)(3,6,1)(5,7,4)(0,6,3)(1,3,2)(2,7,1)

The graphical representation of this chromosome is
shown in Figure 4. In this figure, we show the useful gates
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Figure 4: The graphical representation of chromosome
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Figure 5: The optimized circuit after removing unneces-
sary gates (501).

with logic gates symbols. Figures 5 and 6 show the opti-
mized circuits with fitness 501 and fitness 471 respectively,
after removing unnecessary gates. The circuit in Figure 5
is obviously better than the one in Figure 6, because the
former is composed of less gates, so that the lager fitness
can produce a circuit with less complexity, less power and
less signal delay.

5 Conclusion

This paper proposed GAdss and its application to au-
tonomous design optimization for combinatorial circuits.
By evolution, GAdss can find optimized circuits with less
complexity, less power and less signal delay than GA .

We can also apply GAdss to autonomous design circuits
for more complex functional requirements, and enhance
more exact information about circuit to fitness function. In
the future, we will develop the adaptive systems which re-
configure an existing design to adapt to a variable opera-
tional environment.
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