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Abstract
In this paper, we adopt fuzzy weighting-dependent

free variables in the system dynamics elimination and
fuzzy weighting-dependent kernel matrices in the inte-
gral inequality lemma to maximize the allowable delay
bounds that guarantee the stability of Takagi-Sugeno
(T–S) fuzzy systems with time-varying delays. The
resulting quadratic Parameterized Linear Matrix In-
equalities (PLMIs) are further relaxed by introducing
some free variables for the weighting parameters condi-
tions itself. A simple example is given to demonstrate
the effectiveness of the proposed criterion.
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1 Introduction

T–S fuzzy systems, characterized by linearity of the
local dynamics in different fuzzy sets of fuzzy rules,
have been studied widely and applied to various fields
of industrial applications [1–5]. Among many attract-
ing topics, we shall focus on the stability analysis of
the fuzzy system that has delay elements in the local
dynamics.

A general continuous T–S fuzzy control system with
a time-varying delay can be described as

ẋ(t)=A(t)x(t)+Ah(t)x(t−h(t))+B(t)u(t) (1)

=
r∑

i=1

θi(t){Aix(t)+Ah,ix(t−h(t))+Biu(t)}, (2)

r∑

i=1

θi(t)=1 and θi(t)≥0, i ∈ {1, · · · , r}, (3)

where {θi(t)} may depend on some premise variables.
Up to now, the usual stability criteria have been rep-
resented by way of PLMIs with an affine dependence
on {θi(t)}. To make use of the efficient convex opti-
mization tools, the structure of the decision variables

that are multiplied by {A(t), Ah(t), B(t)} has been re-
stricted to be independent from the fuzzy weighting
functions. See, for example, the free-weighting matri-
ces in the constraint elimination method [1–3] and the
kernel matrices in the quadratic Lyapunov function [1–
5], etc. Recently, [6, 7] reported the conservativeness
of these methods and suggested a relaxation method
of handling PLMIs that are not affinely dependent on
{θi(t)}. The resulting nonlinear parameter conditions,
usually quadratic functions, could be properly relaxed
but the information of (3) could be preserved faith-
fully.

In this paper, we adopt these constraint relaxation
techniques to maximize the allowable delay bounds
that guarantee the stability of the T–S fuzzy sys-
tems. Both the free variables in the constraint elimi-
nation of (1)–(2) [3, 8–10] and the kernel matrices in
the integral inequality lemma [11, 12] are modeled as
fuzzy weighting-dependent functions. The resulting
quadratic PLMIs are further relaxed by introducing
some free variables for the weighting parameter con-
ditions in (3). Our approach essentially reduces the
conservatism of the existing methods.

The paper is organized as follows. Section 2 will
consider a robust stability criterion for T–S fuzzy sys-
tems with time-varying delays. Section 3 will show a
simple example for verification of the criterion.

2 Main Results

Let us consider the following T–S fuzzy delayed sys-
tem with model uncertainty:

ẋ(t)=A(t)x(t)+Ah(t)x(t−h(t))+Dp(t), t≥0, (4)
q(t)=E(t)x(t)+Eh(t)x(t−h(t)), t≥0, (5)
x(t)=φ(t), − h̄ ≤ t ≤ 0, (6)

[A(t) Ah(t) E(t) Eh(t)]=
r∑

i=1

θi(z(t))[Ai Ah,i Ei Eh,i], (7)

where h(t) ∈ [0, h̄], p(t) = ∆(t)q(t), ∆T (t)∆(t) ≤
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γ−2I, and φ(t) ∈ C1(h̄), the set of continuously dif-
ferentiable functions in the domain [−2h̄, 0]. Here,
{θi(z(t))} denote the normalized fuzzy weighting func-
tions that satisfy

0 ≤ θi(z(t)) ≤ 1, ∀ i, and
r∑

i=1

θi(z(t)) = 1, (8)

where r is the number of fuzzy rules and z(t) is a
premise variable vector that may depend on states in
many cases. Let us define χ(t) ∈ Rl×1 as χ(t) ,
[xT (t) xT (t−h(t)) xT (t−h̄) ẋT (t) pT (t)]T and the cor-
responding block entry matrices as ei, i ∈ {1, · · · , 5}
such that the system (4) can be written as 0 =
(A(t)eT

1 + Ah(t)eT
2 − eT

4 + DeT
5 )χ(t).

We shall choose the Lyapunov-Krasovskii func-
tional as follows:

V (t) , V1(t) + V2(t) + V3(t), (9)

V1(t) = xT (t)Px(t), P > 0, (10)

V2(t) =
∫ t

t−h̄

xT (α)Q0x(α)dα, Q0 > 0, (11)

V3(t) =
∫ 0

−h̄

∫ t

t+α

ẋT (β)S0ẋ(β)dβdα, S0 > 0 (12)

such that

V̇1(t)=2ẋT (t)Px(t)=2χT (t)e4PeT
1 χ(t), (13)

V̇2(t)=χT (t){e1Q0e
T
1 −e3Q0e

T
3 }χ(t), (14)

V̇3(t)= h̄χT (t)e4S0e
T
4 χ(t)−

∫ t

t−h̄

ẋT (α)S0ẋ(α)dα. (15)

Then, by the integral inequality lemma [11, 12], for
[
Y11(t) Y12(t)
Y T

12(t) Y22(t)

]
≥ 0,

[
Z11(t) Z12(t)
ZT

12(t) Z22(t)

]
≥ 0, (16)

we have

0 ≤
∫ t

t−h(t)

[
χ(t)
ẋ(α)

]T [
Y11(t) Y12(t)
Y T

12(t) Y22(t)

] [
χ(t)
ẋ(α)

]
dα

= χT (t){Y12(t)(e1 − e2)T + (e1 − e2)Y T
12(t)

+ h(t)Y11(t)}χ(t) +
∫ t

t−h(t)

ẋT (α)Y22(t)ẋ(α)dα,

0 ≤
∫ t−h(t)

t−h̄

[
χ(t)
ẋ(α)

]T [
Z11(t) Z12(t)
ZT

12(t) Z22(t)

] [
χ(t)
ẋ(α)

]
dα

= χT (t){Z12(t)(e2 − e3)T + (e2 − e3)ZT
12(t)

+ (h̄− h(t))Z11(t)}χ(t) +
∫ t−h(t)

t−h̄

ẋT (α)Z22(t)ẋ(α)dα,

so that V̇ (t) can be upper-bounded by the following
quantity:

V̇ (t) ≤ χT (t)Ω1χ(t) + Ω2,

where Ωi denote

Ω1 =h(t)Y11(t)+(h̄−h(t))Z11(t)+h̄e4S0e
T
4

+Y12(t)(e1−e2)T +(e1−e2)Y T
12(t)

+Z12(t)(e2−e3)T +(e2−e3)ZT
12(t)

+e1Q0e
T
1 −e3Q0e

T
3 +e4PeT

1 +e1PeT
4 , (17)

Ω2 =−
∫ t−h(t)

t−h̄

ẋT (α)(S0−Z22(t))ẋ(α)dα

−
∫ t

t−h(t)

ẋT (α)(S0−Y22(t))ẋ(α)dα. (18)

Clearly, if it holds that S0−Z22(t)≥0 and S0−Y22(t)≥0,
Ω2 is non-positive definite, i.e. Ω2 ≤ 0. As for Ω1,
since h(t)Y11(t) + (h̄ − h(t))Z11(t) is a convex com-
bination of the matrices Y11(t) and Z11(t) on h(t), it
can be handled non-conservatively by two correspond-
ing boundary LMIs: one for h(t) = h̄ and the other for
h(t) = 0. Furthermore, we can remove the constraints
of the model dynamics itself in (4) by introducing free
variables M(t) as 0 ≡ χT (t)M(t)(A(t)eT

1 + Ah(t)eT
2 −

eT
4 + DeT

5 )χ(t) like [8–10], and the additional uncer-
tainty constraint (5):
0 ≤ qT (t)q(t)− γ2pT (t)p(t)

= χT (t){(e1E
T (t) + e2E

T
h (t))(E(t)eT

1 + Eh(t)eT
2 )

− γ2e5e
T
5 }χ(t), (19)

which can be handled through the so called S-
procedure [13]. Then, we can state the following theo-
rem for robust stability of the delayed T–S fuzzy sys-
tem.

Theorem 1 For a given γ, the delayed uncertain T–
S fuzzy system (4)–(7) is asymptotically stable if there
exist matrices P , Q0, S0, Y11(t), Y12(t), Y22(t), Z11(t),
Z12(t), Z22(t), and M(t) such that the following con-
ditions hold:

P >0, Q0 >0, S0 >0, S0≥Z22(t), S0≥Y22(t), (20)
[
Y11(t) Y12(t)
Y T

12(t) Y22(t)

]
≥ 0,

[
Z11(t) Z12(t)
ZT

12(t) Z22(t)

]
≥ 0, (21)

0>M(t)(A(t)eT
1 +Ah(t)eT

2 −eT
4 +DeT

5 )

+(e1A
T (t)+e2A

T
h (t)−e4+e5D

T )MT (t)

+(e1E
T (t)+e2E

T
h (t))(E(t)eT

1 +Eh(t)eT
2 )

+Y12(t)(e1−e2)T +(e1−e2)Y T
12(t)

+Z12(t)(e2−e3)T +(e2−e3)ZT
12(t)

+h̄e4S0e
T
4 +e1Q0e

T
1 −e3Q0e

T
3 +e4PeT

1 +e1PeT
4

+h̄(δ(1, k)Y11(t)+δ(2, k)Z11(t))−γ2e5e
T
5 (22)

for k = 1, 2, where δ(i, i) = 1 and δ(i, j) = 0, i 6= j.
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Let us model both the free variables employed for
the constraint elimination of (4) [3, 8–10] and the
kernel matrices in the integral inequality lemma for
the double integral terms of the Lyapunov-Krasovskii
functionals [11, 12] as fuzzy weighting {θi(z(t))}-
dependent functions:

M(t) =
r∑

i=1

θi(z(t))Mi, (23)

[
Y11(t) Y12(t)
Y T

12(t) Y22(t)

]
,

r∑

i=1

θi(z(t))
[
Y11,i Y12,i

Y T
12,i Y22,i

]
, (24)

[
Z11(t) Z12(t)
ZT

12(t) Z22(t)

]
,

r∑

i=1

θi(z(t))
[
Z11,i Z12,i

ZT
12,i Z22,i

]
, (25)

[
Y11,i Y12,i

Y T
12,i Y22,i

]
≥ 0,

[
Z11,i Z12,i

ZT
12,i Z22,i

]
≥ 0, ∀ i. (26)

Unfolding the {θi(z(t))}-dependent time-varying ma-
trices, we can rewrite (22) as a quadratic function of
Θ(t) , [I θ1(z(t))I · · · θr(z(t))I]T ∈ R(r+1)·l×l:

0 > ΘT (t)Ω1,kΘ(t), k = 1, 2, (27)

where Ω1,k are (r + 1) × (r + 1)-block time-invariant
symmetric matrices. Finally, the constraints elimina-
tion method [6, 7] for (8) gives

ΘT (t)N0,kFΘ(t) + ΘT (t)FT NT
0,kΘ(t) = 0, (28)

F , [−I I I · · · I] ∈ Rl×(r+1)·l (29)

for arbitrary N0,k ∈ R(r+1)·l×l and

θi(z(t))θi(z(t))N1,k,i ≥ 0, (30)
θi(z(t))θj(z(t))(N2,k,ij + NT

2,k,ij) ≥ 0, (31)

θi(z(t))(1− θi(z(t)))(N3,k,i + NT
3,k,i) ≥ 0 (32)

for

N1,k,i ≥ 0, N2,k,ij + NT
2,k,ij ≥ 0, N3,k,i + NT

3,k,i ≥ 0,
(33)

where 1 ≤ i ≤ r, i < j ≤ r and k = 1, 2. Then, we can
obtain the following PLMIs-based stability criterion
for delayed T–S fuzzy systems.

Theorem 2 For a given γ, the delayed uncertain T–
S fuzzy system (4)–(7) is asymptotically stable if there
exist matrices P , Q0, S0, Y11,i, Y12,i, Y22,i, Z11,i,
Z12,i, Z22,i, Mi, N0,k, N1,k,i, N2,k,ij and N3,k,i, 1 ≤
i ≤ r, i < j ≤ r, k = 1, 2 such that the following
conditions hold:

P > 0, Q0 > 0, S0 > 0, S0 ≥ Z22,i, S0 ≥ Y22,i, (34)

0 > Ω1,k + N0,kF + FT NT
0,k, (35)

[
Y11,i Y12,i

Y T
12,i Y22,i

]
≥ 0,

[
Z11,i Z12,i

ZT
12,i Z22,i

]
≥ 0, (36)

N1,k,i≥0, N2,k,ij +NT
2,k,ij≥0, N3,k,i+NT

3,k,i≥0, (37)

where Ω1,k are (r+1)×(r+1)-block symmetric matrices
whose elements are

Ω1,k(1, 1)=e4PeT
1+e1PeT

4+e1Q0e
T
1−e3Q0e

T
3

+h̄e4S0e
T
4 −γ2e5e

T
5 ,

Ω1,k(1, i+1)=(e5D
T−e4)MT

i +N3,k,i

+
h̄

2
(δ(1, k)Y11,i+δ(2, k)Z11,i)

+(e1−e2)Y T
12,i+(e2−e3)ZT

12,i,

Ω1,k(i+1, i+1)=Mi(Aie
T
1+Ah,ie

T
2 )+(e1A

T
i +e2A

T
h,i)M

T
i

+(e1E
T
i +e2E

T
h,i)(Eie

T
1+Eh,ie

T
2 )

+N1,k,i−N3,k,i−NT
3,k,i,

Ω1,k(i+1, j+1)=Mi(Aje
T
1+Ah,je

T
2 )+(e1A

T
i +e2A

T
h,i)M

T
j

+(e1E
T
i+e2E

T
h,i)(Eje

T
1+Eh,je

T
2 )+N2,k,ij .

3 Examples

Example 1 Consider the uncertain T–S fuzzy de-
layed system (4)–(7) with two fuzzy rules. The fol-
lowing parameters are used.

A1 =
[ −1.0 0.4

0.0 −0.5
]
, Ah,1 =

[ 0.3 −0.4
0.0 0.0

]
, (38)

E1 =
[ −0.2 0.0

0.0 0.3
]
, Eh,1 =

[ 0.3 0.0
0.0 0.0

]
, (39)

A2 =
[ −0.5 0.0

0.5 −1.0
]
, Ah,2 =

[ 0.4 0.0
0.4 0.3

]
, (40)

E2 =
[ 0.0 0.3

0.0 0.1
]
, Eh,2 =

[ 0.1 −0.1
0.0 0.0

]
, (41)

D =
[ 0.1 0.0

0.0 1.5
]
, γ = 1. (42)

By Theorem 2, the improvement of this paper is shown
in Table 1.

Table 1: maximum h̄ comparison with some previous
results

methods [1] [2] [3] [4] [5] Theorem 2

h̄ 0.639 0.639 0.801 0.808 0.836 1.328

4 Conclusion

In this paper, we adopted fuzzy weighting-
dependent free variables in the system dynamics elimi-
nation and fuzzy weighting-dependent kernel matrices
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in the integral inequality lemma to maximize the al-
lowable delay bounds that guarantee the stability of
T–S fuzzy systems with time-varying delays. The re-
sulting quadratic PLMIs were further relaxed by intro-
ducing some free variables for the weighting parame-
ters conditions itself. A simple example was given to
demonstrate the effectiveness of the proposed crite-
rion.
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