
Robust Optimization Using Multi-Objective Particle Swarm Optimization

Satoshi Ono Yohei Yoshitake Shigeru Nakayama
Department of Information and Computer Science,

Faculty of Engineering, Kagoshima University
1-21-40, Korimoto, Kagoshima, 890-0065 Japan
{ono, sc104059, shignaka}@ics.kagoshima-u.ac.jp

Abstract

This paper proposes an algorithm searching for so-
lutions which are robust against small perturbations
of design variables. The proposed algorithm formu-
lates robust optimization as a bi-objecitve optimiza-
tion problem, and finds solutions by Multi-Objective
Particle Swarm Optimization (MOPSO). Experimen-
tal results have shown that MOPSO has better search
performance to find multiple robust solutions than a
previous method using multi-objective genetic algo-
rithm.

1 Introduction

Particle Swarm Optimization (PSO)[1] is one of
stochastic, population-based optimization algorithms
inspired by swarm intelligence of insects which form
a group and move such as bird, fish, bee and so on.
PSO has recently been investigated and applied to
many real-world problems because of its simplicity and
good search performance. PSO is effective in problems
whose design values are represented by real values in
particular. Multi-Objective Particle Swarm Optimiza-
tion (MOPSO)[2, 3, 4] is also proposed to solve multi-
objective optimization problems involving more than
one objective function.

In recent years there has been renewal of inter-
est in robust optimization techniques as a practical
optimization methodology considering margins of er-
rors, noises, aged deterioration, and other uncertain-
ties on design, production, observation and so on
[5, 6, 7, 8, 9]. General optimization algorithms eval-
uate solution candidates with focusing only on opti-
mality of an objective function. If a solution obtained
by the algorithms is sensitive to small perturbations
of variables, it may not be appropriate or risky for
practical use. Such small variation may cause unde-
sired deviations of engine performance in automobile
valuvetrain control, or collisions or interference in con-
trolling machines. Robust optimization[7, 8, 10] finds

General optimal solution
Robust solutions

Search space

O
bj

ec
tiv

e
fu

nc
tio

n
Figure 1: The difference between general optimization
and robust optimization.

solutions which are moderately good in terms of op-
timality and also good in germs of robustness against
small perturbations of values, as shown in Figure 1.
In many practical optimization tasks, there is a need
to search for robust solutions whose value of optimiza-
tion function is sufficiently high and will not change
due to the small variation of parameter values.

Design For Six Sigma (DFSS)[11, 12] is a method-
ology for designing new products or processes and can
be considered as a robust optimization algorithm. But
in DFSS, an optimization function equation involves
weight parameters which must be adjusted manually,
and sigma level must be specified before starting a
search.

Aiming to resolve the above drawbacks of DFSS,
Design For Multi-Objective Six Sigma (DFMOSS) has
been proposed[6, 8]. DFMOSS performs Monte Carlo
simulation and evaluates solution candidates with two
objective functions: mean value of given objective
function and its deviation. DFMOSS therefore does
not need to adjust the weight parameters in objective
function of DFSS, and to specify sigma level in ad-
vance. Although DFMOSS can find multiple robust
optimal solutions simultaneously, DFMOSS requires
high computational cost.

In this paper, we propose a robust optimization
method by using MOPSO in order to verify the effec-
tiveness of MOPSO against robust optimization. The

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 381

Step 1: Initialize all particles; place them at random
positions with random velocities.

Step 2: Evaluate all particles.
Step 3: Store Pareto solutions chosen randomly into

the archive.
Step 4: Divide objective function space onto

hypercube.
Step 5: Determine personal bests of all solutions.
Step 6: Until evaluation time reaches the limit,

repeat step 7:
Step 7: For each particle i,

repeat step 8 through 12.
Step 8: Update i’s velocity and position.
Step 9: If i moves too slowly, reset its position

and velocity.
Step 10: Evaluate i.
Step 11: Update personal best and the archive.
Step 12: Redivide the hypercube if necessary.

Figure 2: The outline of the proposed algorithm.

proposed algorithm formulates a robust optimization
problem as a multi-objective optimization problem by
following the idea of DFMOSS, and utilizes MOPSO to
search for robust solutions instead of Multi-Objective
Genetic Algorithm in DFMOSS. The proposed algo-
rithm also utilizes hypercube method in order to main-
tain its archive to be diverse. Experimental results
have shown that the proposed algorithm could find ro-
bust optimal solutions with higher discovery rate than
DFMOSS in a benchmark function.

2 The proposed algorithm

2.1 Overview

The algorithm proposed in this paper finds multiple
robust solutions simultaneously based on the following
basic ideas:

1. Formulating robust solution search as a bi-
objective optimization problem. The pro-
posed algorithm replaces single-objective robust
solution search to bi-objective optimization prob-
lem by using Monte Carlo Simulation (MCS). The
two objective functions are mean of the given ob-
jective function values at sampled points nearby
a particle to be evaluated and their standard de-
viation.

2. Using Multi-objective Particle Swarm Op-
timization (MOPSO). The proposed method
is based on MOPSO[2] whereas the previous work

Personal best pi

(The best position
of particle i)

REPi
(The position referred by
particle i in the archive)

Inertial velocity

x
�

�1−x
�

�

2−x
�

�

1+x
�

�

v
�

	v
�

	

1+v

�

Figure 3: Velocity and position update.

uses MOGA[8]. PSO is promising for problems in-
volving continuous design variables. In MOPSO,
a particle moves toward one of known Pareto
solutions and searches around the solution ex-
ploitatively. Although MOGA uses Pareto rank-
ing scheme to handle multi-objective optimization
problem, MOPSO manages Pareto optimal solu-
tions by storing grid-structured archive [13, 2, 4].
Dividing an objective space into hypercubes al-
lows to maintain the diversity of Pareto solutions.

2.2 Search by MOPSO

First, each particle i is initialized; its position xi

and its velocity vi are defined by random. And then,
the archive is initialized by storing Pareto solutions
derived from a set of positions chosen randomly from
search space. Each position in the archive is assigned
to a particle as REPi by random. Objective space is
divided onto d× d hypercubes by dividing each objec-
tive into d equal divisions. Personal best pi is initial-
ized by xi.

After initialization, the proposed algorithm iterates
particles’ position and velocity update. As shown in
Figure 3, particle velocity is updated considering its
personal best position and referring solution’s position
in archive by following equation:

vk+1
i = wvk

i + c1r1(pi − xk
i) + c2r2(REPh − xk

i),(1)
xk+1

i = xk
i + vk+1

i , (2)

where xk
i and vk

i indicate position and velocity of par-
ticle i at step k, pi indicates personal best of particle
i which is the best position of all positions the particle
passed so far, REPh is a solution in archive which is
referred by particle i, c1 and c2 are two positive con-
stants called cognitive and social parameter, r1 and r2

are random numbers uniformly distributed within [0,
1].

Particle i is evaluated in its current position xk+1
i .

If the current position dominates personal best pi of
particle i, then the position replaces pi. If neither of

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 382

the current position and pi is dominated by the other,
pi is selected from them randomly.

Particle i is reset when it violates the constraint,
i.e., it stikcs out of defined domain. Particle i is also
reinitialized when satisfying following two conditions:

- Particle i moves too slowly, i.e., its speed |vi| goes
down under a threshold Tv, and

- There is no improvement on pi for more than Tr
steps.

2.3 Particle evaluation

Two objective functions, mean µf (x) and stan-
dard deviation σf (x) of given objective function val-
ues, are statistical values calculated based on Monte
Carlo Simulation (MCS). Namely, probability distri-
bution which imitates unevenness of design variables
is assumed as Gaussian distribution, mean of the dis-
tribution is set to be the value of variables x(i) of indi-
vidual i and standard deviation of the distribution to
be a specified value, and random points are sampled
nearby x(i).

The proposed algorithm uses Pareto ranking
scheme as DFMOSS, and Pareto solutions are stored
in the archive which are divided onto d2 hypercubes.
Fitness sharing is therefore conducted by this archive
structure.

Solutions are stored in archive by following two
rules:

1. If a particle finds a new good position which dom-
inates the solution the particle is referring, then
the solution in the archive is replaced by the new
position.

2. If both a solution found by a particle and the so-
lution referred by the particle are non-dominant
each other, then the new position is stored in
archive without eliminating the referred solution.
If the number of solutions in the archive exceeds
the limit Np, a solution is selected randomly from
the hypercube which has the most solutions.

Archive is re-partitioned in the case that the maximum
or minimum value of a design variable in the archive
is updated.

3 Evaluation

A benchmark function ft(x) is defined to experi-
mentally validate search performance of the proposed

�

� � �

� � �
� � �

� � �

�

�
� � �

� � �
� � �

� � �
�

�

� � �

� � �

� � �

� � �

�

Figure 4: Tested function ft (n = 2).

algorithm.

ft(x) =
n

∏

k=1

e−
xk−0.1

n

∣

∣

∣
sinm(x)(5πxk)

∣

∣

∣

(0 ≤ xk ≤ 1)
(3)

m(x) =























6 if
∨

a∈{0,0.2,
...,0.8}









∧

k=1,
...,n

a < xk < a + 0.2









1 Otherwise

(4)

The tested function ft has five robust solutions,
and ft at n = 2 is shown in Fig. 4. We used the
function whose dimension n was from 2 to 5. Up-
per and lower specification limits (USL and LSL) are
parameters which should be specified for each target
problem[11]; in this experiment, LSL was set to 0.1
and USL was not used.

A robust solution whose mean value µf (x(i)) and
standard deviation σf (x(i)) of an objective function
satisfy the following equation is regarded as sigma level
lσ:

µf (x(i)) − lσf (x(i)) ≥ LSL. (5)

The higher l is, the more robust X(i) is against small
perturbations of x(i). Sigma levels of solutions found
by a tested algorithm were calculated after the search.

Parameters of MOPSO were configured as follows:
number of particles was set to 1,000, and w, c1, c2,
Tv, Trs, Np, Tr were set to 0.9, 1.2, 1.2, 10−3, 100,
1,000, and 100, respectively. Sampling was performed
by using Descriptive Sampling (DS)[14], and sampling
number and range of DS were 1,000 and 0.02. Param-
eters of DFMOSS were configured as follows: popula-
tion size, crossover method, crossover rate, mutation
rate, and a parameter of Pareto ranking c were 100,

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 383

100

80

60

40

20

0

6.0 �108

0.0 �108

1.0 �108

2.0 �108

3.0 �108

4.0 �108

5.0 �108

2 3 4 5

D
is

co
ve

ry
 ra

te
 o

f
ro

bu
st

 so
lu

tio
ns

 [%
]

Se
ar

ch
 c

os
t f

or
 fi

nd
in

g
al

l r
ob

us
t s

ol
ut

io
ns

 [%
]

Number of dimensions n

MOGA (Discovery rate)
MOPSO (Discovery rate)

MOGA (Search cost)
MOPSO (Search cost)

Figure 5: Experimental results.

BLX-α (α = 0.5), 1.0, 0.2 and 0.1, respectively. The
maximum number of function calls was set to 1.0×109.

Figure 5 shows the discovery rate of robust solutions
over 30 runs, and search cost that is a function eval-
uation time for finding all robust solutions averaged
over the runs succeeded in finding all robust solutions.
The proposed algorithm could find all robust solutions
simultaneously even when n = 4 and find almost all
of solutions when n = 5, whereas DFMOSS could find
all solutions only when n = 2 and found no solutions
when n = 5.

4 Conclusions

In this paper, we propose an algorithm for robust
solution search using multi-objective particle swarm
optimization. The proposed algorithm formulates ro-
bust optimization as a bi-objective optimization prob-
lem which involves two objective functions of mean
and standard deviation on sampled values of an ob-
jective function.

Experimental results have shown that the proposed
MOPSO could find robust solutions better than DF-
MOSS using MOGA.

In the future, we plan to examine in higher dimen-
sional problems and to adopt multi-objective memetic
particle swarm optimization.

Acknowledgements

This research was partially supported by the Min-
istry of Education, Science, Sports and Culture,
Grant-in-Aid for Young Scientist (B), No.20700211,
2008–2010.

References

[1] J. Kennedy and R. Eberhart, “Particle swarm opti-
mization,” in Procedings of the IEEE International
Conference on Neural Networks, vol. 4, 1995, pp.
1942–1948.

[2] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga,
“Handling multiple objectives with particle swarm
optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 256–279, 2004.

[3] J. E. Fieldsend, “Multi-objective particle swarm op-
timization methods,” Technical Report #419, De-
partment of Computer Science, University of Exeter,
2004.

[4] L. Cagnina, S. Esquivel, and C. A. C. Coello, “A par-
ticle swarm optimizer for multi-objective optimiza-
tion,” Journal of Computer Science & Technology,
vol. 5, no. 4, pp. 204–210, 2005.

[5] E. Kazancioglu, G. Wu, J. Ko, S. Bohac, Z. Fil-
ipi, S. J. Hu, D. Assanis, and K. Saitou, “Robust
optimization of an automobile valvetrain using a
multiobjective genetic algorithm,” in Proceedings of
ASME 2003 Design Engineering Technical Confer-
ences (DETC’03), 2003.

[6] K. Shimoyama, K. Fujii, and H. Kobayashi, “Devel-
opment of realistic optimization method of tsto space-
plane — multi-objective and robust optimization,” in
Proceedings of 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, 2004.

[7] S. L. Padula, C. R. Gumbert, and W. Li, “Aerospace
applications of optimization under uncertainty,” Op-
timization and Engineering, vol. 7, no. 3, pp. 317–328,
2006.

[8] K. Shimoyama, “Robust aerodynamic design of mars
exploratory airplane wing with a new optimization
method,” Ph.D. dissertation, University of Tokyo,
2006.

[9] D. Huang, F. Fabozzi, and M. Fukushima, “Ro-
bust portfolio selection with uncertain exit time using
worst-case var strategy,” Operations Research Letters,
vol. 35, pp. 627–635, 2007.

[10] Y. Jin and J. Branke, “Evolutionary optimization in
uncertain environments — a survey,” IEEE Transac-
tions on Evolutionary Computation, vol. 9, no. 3, pp.
303–317, 2005.

[11] G. Brue and R. G. Launsby, Design for Six Sigma.
Mcgraw-Hill, 2003.

[12] M. Sokovic, D. Pavletic, and S. Fakin, “Application
of six sigma methodology for process design,” Journal
of Materials Processing Technology, vol. 162-163, pp.
777–783, 2005.

[13] K. Deb, Multi-Objective Optimization using Evolu-
tionary Algorithms. JohnWiley & Sons, Ltd., 2001.

[14] E. Saliby, “Descriptive sampling: A better approach

to monte carlo simulation,” Journal of the Opera-

tional Research Society, vol. 41, no. 12, pp. 1133–

1142, 1990.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 384

