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Abstract: In this paper, we apply evolutionary multiobjeetigptimization (EMO) algorithms to Pareto-optimat£y
rule mining. Pareto-optimal rules, which are Pa@gitimal in confidence and support maximizatiorvéhan interest-
ing feature that they maximize other various rulaleation measures. In our method, we use MOEA/D BISGA-II,
which are simple and high-performance EMO algorghio efficiently discover Pareto-optimal fuzzyesil Conven-
tional data mining techniques such as Apriori niesket thresholds on confidence and support toceedbe search
space. Our EMO-based method does not need thoaengtars because EMO algorithms make an efficiesmtche
toward confidence-support trade-off curve. Throagimputational experiments, we show that our EMQGetlasethod
can generate Pareto-optimal rules in a short time.
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| INTRODUCTION !EMO-baseq method can generate -Pgreto-optllmal rules
in a short time compared to data mining technicgges
Association rule mining [1] is a popular and well-  pecially when we use MOEA/D. We also show that our

known method for discovering interesting relatiobrs. EMO-based method can obtain better performance be-
its basic form, all association rules satisfyingngocon- cause there is no need to set thresholds on coifide
straints on rule evaluation criteria are extradredn a and support or to set the maximum rule length.
database. There are numerous proposals for the rule  |n addition, we improve the performance of our
evaluation criteria that quantify the interestinggmeor EMO-based method using problem-specific initializa-
goodness of a rule. There are two major rule ev@va  tion, which we calheuristic initialization. We show that
criteria: confidence and support. Other rule eviaduma the use of heuristic initialization can improve ther-
criteria include gain, variance, chi-squared valee; formance of our EMO-based method at the early stage
tropy gain, Gini, Laplace, lift, and conviction. i of evolution.

shown in [2] that Pareto-optimal rules in termsohfi-
dence and support maximization have an interesting

feature that the best rule with respect to any h&f t Il.FUZZY RULES

above-mentioned criteria is included in the Pareto- Letx = (X, ...,X,) be am-dimensional pattern vector.
optimal rules. Our task is to discover fuzzy rules of the follogiin
In this paper, we apply evolutionary multiobjective  form:
optimization (EMO) algorithms to discover Pareto- Rule R: If x;is A and ...
: . . @
optimal fuzzy rules. Among EMO algorithms, we use andx,, is A, then ClassC,

MOEA/D [3] and NSGA-II [4], which are simple and
effective EMO algorithms. Conventional data mining
techniques such as the Apriori algorithm [1] needet
thresholds on confidence and support or need ttheet
maximum rule length to reduce the search space. Our
EMO-based method does not need to set those parame
ters because EMO algorithms make an efficient searc
toward a confidence-support trade-off curve.

The performances of algorithms are examined on the
data sets from the UCI machine learning repository.
Through computational experiments, we show that our Ha (X) = pp (%) LL.Clp (%) )

whereA = (A4, ...,A,) are antecedent fuzzy sets ahis
a consequent class. We denote the Rilm (1) asA
= C. Since we usually have rm priori information
about appropriate fuzzy sets for each attribute,use
various fuzzy sets to extract candidate fuzzy rulas
computational experiments, we use 14 differenhgia
lar fuzzy sets in Fig. 1.

The membership value of the patterio the antece-
dent partA is calculated with the product operator as:
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other objective. It is shown in [2] that Paretoiopl
rules have the maximum value of other various rule
evaluation criteria including gain, variance, chisared
value, entropy gain, Gini, Laplace, lift, and cagtion.
Attibute value Attibute value Since the number of Pareto-optimal rules is conven-
iently small, Pareto-optimal rules can be discodere
efficiently. In this paper, we discover Pareto-opai
rules using EMO algorithms.

=
[y

Membershi|
Membershi|

o

[y
[y

Membershi|
Membershi|

Attribute valut ! 0 Attribute valut

Fig.1. Fuzzy sets used in the computational experiments I11. PARETO-OPTIMAL RULE MINING

WITH EMO ALGORITHMS
In the field of data mining, two rule evaluationter
ria called confidence and support are widely used t
measure the goodness of rules.
Let us assume that we haveraining patterns,, (p
=1, 2, ...,m). The fuzzy version of confidence is de-
fined as follows [5]:

EMO algorithms are widely established and well de-
veloped for problems with multiple objectives. We- a
ply EMO algorithms in the framework of genetics-bes
machine learning (GBML). GBML has two approaches:
Michigan-style and Pittsburgh-style approach. Ie th
Michigan-style approach, chromosomes are individual
Z'UA (Xp) rules and a rule set is represented by the entipailp-
tion. In the Pittsburgh-style approach, each chsomee
represents a rule set (i.e., classifier). We adogptfor-

pzzl’uA (Xp) mer approach (i.e., Michigan-style approach) in our
method where the antecedent part of a Auke (A, ...,
In the same manner, support is defined as foll&js [ A,) is encoded as a chromosome. The objectives of
Z'UA (x.) EMO algorithms are the maximization of confidence
P and coverage.

confidence(A = C) =225 3)

m

x,0C

support(A =C) =—2————., 4
pport( ) m @ . confidence(A = C)
maximize (6)
A rule evaluation criterion called coverage can be coverage(A = C)
used instead of support. Coverage is defined &sfsl Among EMO algorithms, we use MOEA/D and
Z Ha (X ) NSGA-Il. We briefly explain basic characteristicé o
X.0C these two algorithms in the following subsections.
coverage(A = C) =2 . (5)
sup(C) 1. MOEA/D

MOEA/D is an EMO algorithm proposed by Zhang
[3]. Let P andEP be a current population and an exter-
nal population, respectively. In MOEA/D, each irdiv
ual hasT neighbors to which one of the uniformly gen-
erated weight vectors is assigned. In MOEA/D, genet
operations for each individual are locally perfodme
among its neighbors. The outline of MOEA/D can be
written as follows:

wheresup(C) is consequent support, which is equal to
the number of patterns whose clas€.i his measure is
often used for the problem of partial classificati6].
This problem is the search for the rules of a deti
class. In partial classification, it is often conient and
intuitive to use coverage instead of support. Sitie
sup(C) is constant in partial classification, the maximi
zation of coverage is the same as that of supjpdet.
hereafter use coverage instead of support bechgse t 1. |nitialize P
consequent class is fixed in our method. 2: while a termination condition is not satisfied
We call the rules, which are Pareto-optimal in rm 3. foreach individual x in P
of the maximization of confidence and coverage,
Pareto-optimal rules. Roughly speaking, a solution is
Pareto optimal if it cannot result in further impemnent
of an objective without causing the degradatioranf

Selecin, n from theT neighbors ok
Generatg fromm, n by genetic operations
Update the neighbors »fwith y

UpdateEP

N o gk
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8: end foreach
9: end while
10: return EP

First an initial population is generated in lindi.line 1,

a set of uniformly distributed weight vectors isal
generated. In line 4, a couple of paremtsandn are
randomly selected from th& neighbors ofx. Then in
line 5, an offspring/ is generated frorm andn by us-
ing genetic operators. In line 6,)ifis better than some
neighbors ofx, they are replaced wity. The compari-
son is made by using scalarizing function (i.ee th
weighted sum or the weighted Tchebycheff, we use th
latter in our experiments). In line 7, all indivals
dominated by are removed frorkP. These procedures
are applied for each individual until a terminatioon-
dition is satisfied.

2. NSGA-II
NSGA-II is an EMO algorithm proposed by Deb [4].
The outline of NSGA-II can be written as follows:

1. P =Initialize P)

2: while a termination condition is not satisfidd
3: P’ = Selection P)

4; P” = Genetic OperationsR)

5 P = ReplaceRUP”)

6: end while

7: return non-dominated solution$)

First an initial population is generated in line If.
line 3, parent individuals (i.eR") are selected from the
current populatiorP. The standard binary tournament
selection is used to choose a pair of parent iddads.

In line 4, an offspring populatioR” is generated from
the parent populatio®’ by genetic operations such as
crossover and mutation. In line 5, the best indigld
are chosen from the merged populatidhUP”) to
generate the next populatién

IV.COMPUTATIONAL EXPERIMENTS

Experiments were conducted by using the following
seven datasets from the UCI machine learning reposi

tory: Breast W, Diabetes, Glass, Heart C, Iris, &pn

and Wine. The parameter specifications in EMO algo-

rithms are as follows:
Population size: 200 individuals,
Crossover probability: 1.0 (uniform crossover),
Mutation probability: 1,
Termination condition: 1000 generations.
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We compare the performance of our method with
that of conventional data mining algorithms inchagli
the Apriori algorithm and the simple enumeratiofk).S
For Apriori and SE, we set minimum confidence and
coverage as 0.6 and 0.01, respectively. We alstheet
maximum rule length as two for Sonar and threettier
other datasets to alleviate a computational load.

Table 1 shows the average CPU time of 100 runs.
The experiment was conducted on Dual Core Xeon
3.6GHz, 4GB RAM workstations. The best result for
each class is highlighted in bold. The values irepa
theses will be mentioned later. From Table 1, wesze
that MOEA/D is faster than the other algorithms for
many datasets. While Apriori outperforms MOEA/D for
some datasets, it is significantly slow for others.

Figure 2 shows generated fuzzy rules in confidence-
coverage space for Class 4 and 5 of Glass. MOEA/D
and NSGA-II clearly outperforms Apriori and SE. It
should be noted that MOEA/D and NSGA-II can gener-
ate fuzzy rules that have four or more antecederryf
sets. This allows MOEA/D and NSGA-Il to generate
fuzzy rules with high confidence and coverage.

One underlying problem with MOEA/D and NSGA-

Il is that they cannot discover useful rules whettata-

set has a number of attributes. In the case of rSona
which has 60 attributes, all discovered rules by
MOEA/D and NSGA-II were zero-confidence and zero-
coverage. As the number of attributes increases, th
search spaces of MOEA/D and NSGA-II exponentially
increase. The size of the search space for Sorid s

Table 1. CPU time (sec.)

Dataset Class MOEA/D NSGA-Il  Apriori SE
1 211 (211) 57.1 (576) 81 489

BreastW 5 509 (20.9) 536 (53.8) 634  49.0
: 1 218 (220) 60.3 (61.0) 135 335

Diabetes 5 517 (21.9) 580 (58.5) 150 333
1 74 (7.4) 295 (302) 74 153

2 72 (7.2) 296 (305) 134 154

Gass 3 75 (16) 297 (305) 74 153
4 71 (7.1) 283 (29.6) 148 154

5 72 (7.2) 27.7 (287) 61 153

6 72 (7.2) 284 (29.6) 133 154

1 122 (12.1) 386 (39.1) 1050 9838

2 127 (125) 389 (39.6) 1059 97.4

HeartC 3 126 (12.5) 39.2 (39.5) 1147 97.4
4 126 (12.5) 39.1 (39.4) 1185 97.4

5 130 (12.9) 38.4 (39.9) 932 97.8

1 34 (35 201 (201) 01 03

Iris 2 34 (35 202 (203) 02 0.3

3 34 (35 203 (203) 02 03

comar 1 347 (30.9) 764 (81.6) 2015 823
2 347 (30.9) 749 (81.6) 2217 825

1 75 (7.6) 282 (284) 1042 589

Wine 2 75 (7.5) 283 (285) 1642 589
3 75 (7.6) 283 (288) 1125 59.0
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Fig. 2. Generated fuzzy rules (Glass).

which makes the search for Pareto-optimal rulesosnp
sible. One possible remedy for this problem is se u
problem-specific initialization for improving thearch
ability.

V.HEURISTIC INITIALIZATION

In the design of fuzzy classifiers, the searchitgbil
of fuzzy classifiers can be improved by directingeat-
ing initial fuzzy rules from training patterns. L&, be
the population size. First we randomly seldgte pat-
terns. Then we choose the fuzzy set which has la hig
membership value. We probabilistically choose atie-an
cedent fuzzy set from the 14 candida®ggk = 1, 2, ...,
14) in Fig. 1 where each candid@ghas the following
selection probability for the attribute valxe

He, (%)
P(B) =2 ™)

Zﬂsj (%)
j=1

We conducted the same experiment using heuristic
initialization. By using heuristic initializatioMOEA/D
and NSGA-Il could discover as good rules as Apriori
and SE for Sonar. To show the effects of heurisiiic
tialization, we examined the hypervolume measure du
ing evolution. The hypervolume measure, which indi-
cates the size of the portion of objective space ih
dominated by the solutions, is often used to asgess
performance of EMO algorithms. Figure 3 shows the
average value of the hypervolume measure at eath ge
eration for Heart C. In Fig. 3, MOEA/and NSGA-I}
shows the results using heuristic initializatione \6an
see that MOEA/p and NSGA-I|; evolves faster than
the original ones at the early stage.

The effect of using heuristic initialization on CPU
time is not large. The values in parentheses ineTab
show the CPU time with heuristic initialization. ttés-
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Fig. 3. Hypervolume measure (Heart C).

tic initialization made 0.2-second delay for MOEA/D
and 6.7-second delay for NSGA-Il at most. In some
cases (e.g., Heart C and Sonar), MOEA/D with h&aris
initialization was faster than the original one.

VI. CONCLUSION

In this paper, we applied MOEA/D and NSGA-II to
discover Pareto-optimal fuzzy rules. Through coraput
tional experiments, we showed that MOEA/D is faster
than Apriori and SE for a number of datasets. Futhe
more, the generated rules were better than Apaiod
SE. We also showed that the search ability of MGEA/
and NSGA-II was improved by using heuristic initial
zation without increasing much computation time.
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