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Abstract: In this paper, we apply evolutionary multiobjective optimization (EMO) algorithms to Pareto-optimal fuzzy 
rule mining. Pareto-optimal rules, which are Pareto-optimal in confidence and support maximization, have an interest-
ing feature that they maximize other various rule evaluation measures. In our method, we use MOEA/D and NSGA-II, 
which are simple and high-performance EMO algorithms, to efficiently discover Pareto-optimal fuzzy rules. Conven-
tional data mining techniques such as Apriori need to set thresholds on confidence and support to reduce the search 
space. Our EMO-based method does not need those parameters because EMO algorithms make an efficient search 
toward confidence-support trade-off curve. Through computational experiments, we show that our EMO-based method 
can generate Pareto-optimal rules in a short time. 
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I. INTRODUCTION 

Association rule mining [1] is a popular and well-

known method for discovering interesting relations. In 

its basic form, all association rules satisfying some con-

straints on rule evaluation criteria are extracted from a 

database. There are numerous proposals for the rule 

evaluation criteria that quantify the interestingness or 

goodness of a rule. There are two major rule evaluation 

criteria: confidence and support. Other rule evaluation 

criteria include gain, variance, chi-squared value, en-

tropy gain, Gini, Laplace, lift, and conviction. It is 

shown in [2] that Pareto-optimal rules in terms of confi-

dence and support maximization have an interesting 

feature that the best rule with respect to any of the 

above-mentioned criteria is included in the Pareto-

optimal rules. 

In this paper, we apply evolutionary multiobjective 

optimization (EMO) algorithms to discover Pareto-

optimal fuzzy rules. Among EMO algorithms, we use 

MOEA/D [3] and NSGA-II [4], which are simple and 

effective EMO algorithms. Conventional data mining 

techniques such as the Apriori algorithm [1] need to set 

thresholds on confidence and support or need to set the 

maximum rule length to reduce the search space. Our 

EMO-based method does not need to set those parame-

ters because EMO algorithms make an efficient search 

toward a confidence-support trade-off curve.  

The performances of algorithms are examined on the 

data sets from the UCI machine learning repository. 

Through computational experiments, we show that our 

EMO-based method can generate Pareto-optimal rules 

in a short time compared to data mining techniques es-

pecially when we use MOEA/D. We also show that our 

EMO-based method can obtain better performance be-

cause there is no need to set thresholds on confidence 

and support or to set the maximum rule length. 

In addition, we improve the performance of our 

EMO-based method using problem-specific initializa-

tion, which we call heuristic initialization. We show that 

the use of heuristic initialization can improve the per-

formance of our EMO-based method at the early stage 

of evolution. 

 

II. FUZZY RULES 

Let x = (x1, ..., xn) be an n-dimensional pattern vector. 

Our task is to discover fuzzy rules of the following 

form: 
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where A = (A1, ..., An) are antecedent fuzzy sets and C is 

a consequent class. We denote the rule R in (1) as A 

⇒C. Since we usually have no a priori information 

about appropriate fuzzy sets for each attribute, we use 

various fuzzy sets to extract candidate fuzzy rules. In 

computational experiments, we use 14 different triangu-

lar fuzzy sets in Fig. 1. 

The membership value of the pattern x to the antece-

dent part A is calculated with the product operator as: 
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In the field of data mining, two rule evaluation crite-

ria called confidence and support are widely used to 

measure the goodness of rules. 

Let us assume that we have m training patterns xp, (p 

= 1, 2, …, m). The fuzzy version of confidence is de-

fined as follows [5]: 
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In the same manner, support is defined as follows [5]: 
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A rule evaluation criterion called coverage can be 

used instead of support. Coverage is defined as follows: 
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where sup(C) is consequent support, which is equal to 

the number of patterns whose class is C. This measure is 

often used for the problem of partial classification [6]. 

This problem is the search for the rules of a specified 

class. In partial classification, it is often convenient and 

intuitive to use coverage instead of support. Since the 

sup(C) is constant in partial classification, the maximi-

zation of coverage is the same as that of support. We 

hereafter use coverage instead of support because the 

consequent class is fixed in our method. 

We call the rules, which are Pareto-optimal in terms 

of the maximization of confidence and coverage, 

Pareto-optimal rules. Roughly speaking, a solution is 

Pareto optimal if it cannot result in further improvement 

of an objective without causing the degradation of an-

other objective. It is shown in [2] that Pareto-optimal 

rules have the maximum value of other various rule 

evaluation criteria including gain, variance, chi-squared 

value, entropy gain, Gini, Laplace, lift, and conviction. 

Since the number of Pareto-optimal rules is conven-

iently small, Pareto-optimal rules can be discovered 

efficiently. In this paper, we discover Pareto-optimal 

rules using EMO algorithms. 

 

III. PARETO-OPTIMAL RULE MINING  
WITH EMO ALGORITHMS 

EMO algorithms are widely established and well de-

veloped for problems with multiple objectives. We ap-

ply EMO algorithms in the framework of genetics-based 

machine learning (GBML). GBML has two approaches: 

Michigan-style and Pittsburgh-style approach. In the 

Michigan-style approach, chromosomes are individual 

rules and a rule set is represented by the entire popula-

tion. In the Pittsburgh-style approach, each chromosome 

represents a rule set (i.e., classifier). We adopt the for-

mer approach (i.e., Michigan-style approach) in our 

method where the antecedent part of a rule A = (A1, ..., 

An) is encoded as a chromosome. The objectives of 

EMO algorithms are the maximization of confidence 

and coverage. 
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Among EMO algorithms, we use MOEA/D and 

NSGA-II. We briefly explain basic characteristics of 

these two algorithms in the following subsections. 

1. MOEA/D 
MOEA/D is an EMO algorithm proposed by Zhang 

[3]. Let P and EP be a current population and an exter-

nal population, respectively. In MOEA/D, each individ-

ual has T neighbors to which one of the uniformly gen-

erated weight vectors is assigned. In MOEA/D, genetic 

operations for each individual are locally performed 

among its neighbors. The outline of MOEA/D can be 

written as follows: 

1: Initialize P 

2: while a termination condition is not satisfied do 

3:  foreach individual x in P 

4:   Select m, n from the T neighbors of x 

5:    Generate y from m, n by genetic operations 

6:   Update the neighbors of x with y 

7:   Update EP 
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Fig. 1. Fuzzy sets used in the computational experiments. 
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8:  end foreach 
9: end while 

10: return EP 

First an initial population is generated in line 1. In line 1, 

a set of uniformly distributed weight vectors is also 

generated. In line 4, a couple of parents m and n are 

randomly selected from the T neighbors of x. Then in 

line 5, an offspring y is generated from m and n by us-

ing genetic operators. In line 6, if y is better than some 

neighbors of x, they are replaced with y. The compari-

son is made by using scalarizing function (i.e., the 

weighted sum or the weighted Tchebycheff, we use the 

latter in our experiments). In line 7, all individuals 

dominated by y are removed from EP. These procedures 

are applied for each individual until a termination con-

dition is satisfied. 

2. NSGA-II 
NSGA-II is an EMO algorithm proposed by Deb [4]. 

The outline of NSGA-II can be written as follows: 

1: P = Initialize (P) 

2: while a termination condition is not satisfied do 

3:  P’ = Selection (P) 

4:  P’’ = Genetic Operations (P’) 

5:  P = Replace (PUP’’) 

6: end while 

7: return non-dominated solutions (P) 

First an initial population is generated in line 1. In 

line 3, parent individuals (i.e., P’) are selected from the 

current population P. The standard binary tournament 

selection is used to choose a pair of parent individuals. 

In line 4, an offspring population P’’ is generated from 

the parent population P’ by genetic operations such as 

crossover and mutation. In line 5, the best individuals 

are chosen from the merged population (P U P’’) to 

generate the next population P.  

 

IV. COMPUTATIONAL EXPERIMENTS 

Experiments were conducted by using the following 

seven datasets from the UCI machine learning reposi-

tory: Breast W, Diabetes, Glass, Heart C, Iris, Sonar, 

and Wine. The parameter specifications in EMO algo-

rithms are as follows: 

Population size: 200 individuals, 

Crossover probability: 1.0 (uniform crossover), 

Mutation probability: 1/n, 

Termination condition: 1000 generations. 

We compare the performance of our method with 

that of conventional data mining algorithms including 

the Apriori algorithm and the simple enumeration (SE). 

For Apriori and SE, we set minimum confidence and 

coverage as 0.6 and 0.01, respectively. We also set the 

maximum rule length as two for Sonar and three for the 

other datasets to alleviate a computational load. 

Table 1 shows the average CPU time of 100 runs. 

The experiment was conducted on Dual Core Xeon 

3.6GHz, 4GB RAM workstations. The best result for 

each class is highlighted in bold. The values in paren-

theses will be mentioned later. From Table 1, we can see 

that MOEA/D is faster than the other algorithms for 

many datasets. While Apriori outperforms MOEA/D for 

some datasets, it is significantly slow for others. 

Figure 2 shows generated fuzzy rules in confidence-

coverage space for Class 4 and 5 of Glass. MOEA/D 

and NSGA-II clearly outperforms Apriori and SE. It 

should be noted that MOEA/D and NSGA-II can gener-

ate fuzzy rules that have four or more antecedent fuzzy 

sets. This allows MOEA/D and NSGA-II to generate 

fuzzy rules with high confidence and coverage. 

One underlying problem with MOEA/D and NSGA-

II is that they cannot discover useful rules when a data-

set has a number of attributes. In the case of Sonar 

which has 60 attributes, all discovered rules by 

MOEA/D and NSGA-II were zero-confidence and zero-

coverage. As the number of attributes increases, the 

search spaces of MOEA/D and NSGA-II exponentially 

increase. The size of the search space for Sonar is 1560, 

Table 1. CPU time (sec.) 
Dataset Class MOEA/D NSGA-II Apriori SE 

1 21.1  (21.1) 57.1  (57.6) 8.1  48.9  
Breast W 

2 20.9  (20.9) 53.6  (53.8) 63.4  49.0  
1 21.8  (22.0) 60.3  (61.0) 13.5  33.5  

Diabetes 
2 21.7  (21.9) 58.0  (58.5) 15.0  33.3  
1 7.4  (7.4) 29.5  (30.2) 7.4  15.3  
2 7.2  (7.2) 29.6  (30.5) 13.4  15.4  
3 7.5  (7.6) 29.7  (30.5) 7.4  15.3  
4 7.1  (7.1) 28.3  (29.6) 14.8  15.4  
5 7.2  (7.2) 27.7  (28.7) 6.1  15.3  

Glass 

6 7.2  (7.2) 28.4  (29.6) 13.3  15.4  
1 12.2  (12.1) 38.6  (39.1) 105.0  98.8  
2 12.7  (12.5) 38.9  (39.6) 105.9  97.4  
3 12.6  (12.5) 39.2  (39.5) 114.7  97.4  
4 12.6  (12.5) 39.1  (39.4) 118.5  97.4  

Heart C 

5 13.0  (12.9) 38.4  (39.9) 93.2  97.8  
1 3.4  (3.5) 20.1  (20.1) 0.1  0.3  
2 3.4  (3.5) 20.2  (20.3) 0.2  0.3  Iris 
3 3.4  (3.5) 20.3  (20.3) 0.2  0.3  
1 34.7  (30.9) 76.4  (81.6) 201.5 82.3 

Sonar 
2 34.7  (30.9) 74.9  (81.6) 221.7 82.5 
1 7.5  (7.6) 28.2  (28.4) 104.2  58.9  
2 7.5  (7.5) 28.3  (28.5) 164.2  58.9  Wine 
3 7.5  (7.6) 28.3  (28.8) 112.5  59.0  
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which makes the search for Pareto-optimal rules impos-

sible. One possible remedy for this problem is to use 

problem-specific initialization for improving the search 

ability. 

 

V. HEURISTIC INITIALIZATION 

In the design of fuzzy classifiers, the search ability 

of fuzzy classifiers can be improved by directly generat-

ing initial fuzzy rules from training patterns. Let Nrule be 

the population size. First we randomly select Nrule pat-

terns. Then we choose the fuzzy set which has a high 

membership value. We probabilistically choose an ante-

cedent fuzzy set from the 14 candidates Bk (k = 1, 2, …, 

14) in Fig. 1 where each candidate Bk has the following 

selection probability for the attribute value xi: 
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We conducted the same experiment using heuristic 

initialization. By using heuristic initialization, MOEA/D 

and NSGA-II could discover as good rules as Apriori 

and SE for Sonar. To show the effects of heuristic ini-

tialization, we examined the hypervolume measure dur-

ing evolution. The hypervolume measure, which indi-

cates the size of the portion of objective space that is 

dominated by the solutions, is often used to assess the 

performance of EMO algorithms. Figure 3 shows the 

average value of the hypervolume measure at each gen-

eration for Heart C. In Fig. 3, MOEA/DH and NSGA-IIH 

shows the results using heuristic initialization. We can 

see that MOEA/DH and NSGA-IIH evolves faster than 

the original ones at the early stage. 

The effect of using heuristic initialization on CPU 

time is not large. The values in parentheses in Table 1 

show the CPU time with heuristic initialization. Heuris-

tic initialization made 0.2-second delay for MOEA/D 

and 6.7-second delay for NSGA-II at most. In some 

cases (e.g., Heart C and Sonar), MOEA/D with heuristic 

initialization was faster than the original one. 

 

VI. CONCLUSION 

In this paper, we applied MOEA/D and NSGA-II to 

discover Pareto-optimal fuzzy rules. Through computa-

tional experiments, we showed that MOEA/D is faster 

than Apriori and SE for a number of datasets. Futher-

more, the generated rules were better than Apriori and 

SE. We also showed that the search ability of MOEA/D 

and NSGA-II was improved by using heuristic initiali-

zation without increasing much computation time. 
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Fig. 2. Generated fuzzy rules (Glass). 
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Fig. 3. Hypervolume measure (Heart C). 
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