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Abstract
Competitive coevolutionary algorithms (CCEA)

have many advantages but their application range
has been crucially limited. This study provides a
simple, non-problem-specific framework to extend the
range. The framework has two coevolving popula-
tions: that of candidate solutions and that of criteria,
in which these population competitively coevolve with
each other. The framework aims to move candidate
solutions getting stuck in a local optimum by chang-
ing the fitness landscape dynamically. Moreover, the
framework has a mechanism in order to establish and
maintain proper arms race. We have conducted ex-
periments on two function optimization problems: 1-
dimensional function maximization problem and the
Rastringin function minimization problem, in order to
investigate the basic properties of the framework. The
results of the experiments showed that CCEA achieves
comparable performance with GA.
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rithm, Genetic Algorithm, Evolutionary Computa-
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1 Introduction

Since D. Hillis extended the evolutionary compu-
tation paradigm by introducing coevolution [1] et al.,
competitive coevolutionary algorithms (CCEAs) have
attracted a lot of attention in the field of evolutionary
algorithms (EAs). The framework of CCEA is simi-
lar to that of conventional EA except for fitness eval-
uation, in which the fitness of an individual is based
on “competitions” with other individuals instead of an
objective function. The difference between CCEA and
EA in fitness evaluation have been believed to make a
significant difference between them in applicable prob-
lems.

Conventional EA can be applied to the problems
in which solutions can be evaluated absolutely, such
as function optimization, combinatorial optimization.
On the other hand, CCEA can find great solutions for
problems which can be expressed by using competi-

Figure 1: The framework.

tive populations in GA framework including sorting-
network design (sorting networks vs test cases) [1], cel-
lular automaton density classification (CA rules vs ini-
tial states) [2] and the Nim game (first move vs passive
move) [3]. It has been shown that CCEA can perform
better than EA in this type of problems. However,
the range of the problems to which CCEA can be ap-
plied has been crucially limited, which has prohibited
its progress.

There have been a very few researches which inves-
tigate the performance and characteristics of CEAs in
solving problems in which solutions can be evaluated
absolutely [4]. However, unfortunately approaches
proposed in these researches are problem specific. In
this work, we propose a simple, non-problem-specific
framework of CCEA which extends significantly the
range of problems to which CCEA can be applied.

2 Framework

Figure 1 shows our proposed framework. In the
framework, candidate solutions and criteria (thresh-

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 373



olds) competitively coevolve with each other. A cri-
terion is defined as a real value used to evaluate a
candidate solution. Competition between a solution
and a criterion in a maximization problem is simply
a comparison: If the objective function value of the
candidate solution is greater than the criterion then
the solution is rewarded, otherwise the criterion is re-
warded. The total rewards are used as fitness. The
fitness functions of solutions and criteria, denoted by
fSol and fCrit respectively, are defined as follows:

fSol(x) =
∑

b∈PCrit

I(Sol,Crit)(x, b) (1)

fCrit(b) =
∑

x∈PSol

I(Crit,Sol)(b, x) (2)

I(Sol,Crit)(x, b) =

{
1 if f(x) ≥ b

0 else
(3)

I(Crit,Sol)(b, x) = 1− I(Sol,Crit)(x, b) (4)

where I(Sol,Crit)(x, b) and I(Crit,Sol)(b, x) represent re-
wards to a candidate solution x and to a criterion b
respectively, PSol and PCrit represent the population
of candidate solutions and that of criteria respectively
and f(x) is the objective function of a given problem.

The point of the framework is to utilize the loss of
gradient of the dynamic landscape, which has been
believed to be detrimental at least in the field of
CCEA [5]. Specifically, the more one population out-
performs the other, in other words, the less difference
in fitness among individuals in each population exist,
the more coevolutionary search becomes to random
search, which is realized not by an explicit algorithm
but by the coevolution implicitly. This mechanism
can allow populations stuck in local optima to escape
there.

Moreover, this framework has a mechanism in order
to establish and maintain proper arms race. Selection
and genetic operations are not performed to a popu-
lation if the average fitness of the opponents is lower
than the parameter θ. In other words, if the differ-
ence in fitness between two populations goes beyond a
certain present value, the preceding population stops
evolving until dropping below the value. Thus this
framework stops the evolution of a coevolving popula-
tion according to the condition of the opponents.

This framework is not problem-specific since it uses
the objective function of a given problem only.

3 Evolutionary Setup

Our CCEA has two populations: a population of
candidate solutions and that of criterion. Each pop-
ulation consists of N individuals. The genotype of

Table 1: The values used for parameters.

1-D function Rastringin
population size N 30 100

dimension n 1 10
mutation prob. pm 0.1 0.01

σSol 0.25 0.25
σCrit 0.25 1.0

max. generation gmax 1× 105 5× 104

a candidate solution is defined as a vector of length n
and, as mentioned above, the genotype of a criterion is
defined as a real value. For each of these, the genotype
is identical to the phenotype. Stochastic Universal Se-
lection [6] is adopted. Mutation is the only genetic
operator used in the experiments, which is realized by
adding a random number generated according to a nor-
mal distribution N (0, σSol) for candidate solutions or
N (0, σCrit) for criterion to the value at each locus with
a probability pm. All algorithms evaluated in this ex-
periments terminates when the number of generations
reached to gmax.

Table 1 shows the values used for these parameters.

4 Results

In order to investigate the basic properties of the
framework, we firstly applied it to a 1-dimensional
function maximization problem and compared the re-
sults of out CCEA to those of three types of genetic al-
gorithms (GAs): a conventional GA, a GA with fitness
sharing (GA+FS) which is used to avoid premature
convergence [7], a GA with random selection (RAN-
DOM). Each of the algorithms compared is initialized
with a population of N individuals whose genotype is
0.

The objective function of this problem is defined as
a multimodal function of one variable as follows:

f(x) = x + ax sin(bx) (5)

where x ∈ [0,∞] and the values of a and b are 0.75
and 3.0 respectively. Local optima of this problem are
placed at regular intervals.

Figure 2 shows that the objective value of the best
solution which each algorithm found so far. CCEA
found better solutions for this problem than GAs.
Particularly, CCEA with θ = 0 is the best among
the algorithms compared in this experiments, which
is 102 times as large as GA and is 10 times as large
as GA+FS in terms of the objective value of the best
solution found up to the last generation (Table 2).
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Figure 2: The objective value of the best solution
found so far versus generation (averaged over 30 runs).

Table 2: The objective value of the best solution found
up to the last generation (averaged over 30 runs).

GA 3.730× 100

GA+FS 3.312× 101

RANDOM 1.482× 101

CCEA θ = 0 5.777× 102

θ = 10 2.012× 101

θ = 25 1.095× 102

θ = 50 1.118× 102

Figure 3 illustrates how in CCEA with θ = 0 can-
didate solutions escape from local optima by utilizing
loss of gradient. Candidate solutions can move and
pass through valleys among local optima freely while
loss of gradient occurs (Fig. 3(a)). The populations
start to coevolve competitively again when a good so-
lution whose objective value is larger than some crite-
ria is found (Fig. 3(b)). Though loss of gradient will
occur again, this phenomenon moves candidate solu-
tions to a higher peak (Fig. 3(c)).

Furthermore, we applied our framework to the Ras-
tringin function minimization problem [8] which is
known as a benchmark problem so as to investigate
how our framework would work on more practical
problems. Rastringin function is given by the follow-
ing equation:

f(x) = 10n +
n∑

i=1

(
x2

i − 10 cos(2πxi)
)

(6)

where xi ∈ [−5.12, 5.11]. This problem has the unique
global optimum x∗ = (0, 0, . . . , 0) and has many local
optima. A population of candidate solutions is ini-
tialized randomly and all criterion in the initial popu-
lation are arranged at regular intervals in the range
between the maximum of and the minimum of the
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Figure 4: The objective value of the best solution
found so far (averaged over 30 runs).

Table 3: The objective value of the best solution found
so far (averaged over 30 runs).

GA 6.633× 10−2

CCEA θ = 0.0 1.726× 101

θ = 10.0 6.641× 100

θ = 25.0 1.923× 100

θ = 50.0 1.025× 100

objective function values of the initial candidate so-
lutions.

Figure 4 shows that the objective value of the best
solution which each algorithm found so far. This figure
indicates that the larger the value of the parameter θ,
the better the quality of solutions which CCEA found.
However, the performance of CCEA was slightly worse
than that of GA (Table 3).

In order to measure the speed of convergence to
the global optimum, we measured the expected num-
ber of generations taken by each algorithm to find a
candidate solution whose objective value is less than a
specified threshold (Figure 5)1. This analysis reveals
that CCEA finds the nearest local optima (n = 1) to
the global optimum faster than GA.

5 Summary

We have proposed a simple framework of com-
petitive coevolutionary algorithms (CCEA) to extend
their application range. We conducted the experi-
ments on two function optimization problems: a 1-
dimensional function maximization problem and the

1The values of multiplying the objective function value of the
nearest local optimum to the global optimum by n (0 ≤ n ≤
10) are used for the thresholds. In the figure, the values of all
algorithms compared in the experiments at n = 0 are equal to
0, which indicates that all algorithm could not find the global
optimum.
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(a) 796th generation.
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(b) 802th generation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1.5  2  2.5  3  3.5  4  4.5  5
 0

 5

 10

 15

 20

 25

 30

O
bj

ec
tiv

e 
V

al
ue

F
itn

es
s

X

Objective Function
Fitness

Average Criteria
Solutions

(c) 810th generation.

Figure 3: The changes of the dynamic fitness landscape in a typical run. The solid line indicates the objective
function (Equation 5), the dashed line indicates the fitness landscape of candidate solutions and the dotted line
indicates the average of criteria. A cross indicates a candidate solution.
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Figure 5: The expected number of generations taken
by each algorithm to find a candidate solution whose
objective value is less than a certain level. n = 0
means the global optimum (averaged over 30 runs).

Rastringin function minimization problem, in order
to investigate the basic properties of our framework.
The results of the first experiments showed that our
CCEA is the best among the algorithms compared in
the experiments because it can escape from local op-
tima by utilizing loss of gradient and demonstrated
how CCEA utilizes loss of gradient. Moreover, the
results of the second experiments showed that CCEA
has performance comparable to GA and that, in par-
ticular, on a practical problem our CCEA can find an
approximate solution faster than GA.

Function optimization is one of the most important
optimization problems and has a large application. We
believe that this framework will open up an interesting
possibility to extend drastically the range of problems
to which CCEA can be applied.
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