
Development of Programming Language Espace and Its Application to
Parallel and Distributed Evolutionary Computation

Takehiko IWAKAWA Satoshi ONO Shigeru NAKAYAMA
Deptartment of Information and Computer Science, Faculty of Engineering

Kagoshima University
1-21-40, Korimoto, Kagohima 890-0065, Japan
{sc100007, ono, shignaka}@ics.kagoshima-u.ac.jp

Abstract

This paper proposes a programming language called
“Espace” for parallel and distributed computation. In
general, it is difficult to code a distributed, paral-
lel program due to multi threading, message passing,
managing clients, and so on. Espace involves a few
simple syntax rules added to Java. Developers do not
need to know how to write a parallel, distributed pro-
gram source code in detail. This paper applies Espace
to parallelize an evolutionary computation program
and shows that the Espace compiler enables to con-
vert an evolutionary computation program written in
Java into a distributed, parallel system by adding a
few words to the program.

1 Introduction

General evolutionary computation algorithms are
stochastic, population-based generate-and-test algo-
rithms which require huge computational cost. They
are not an essential way to solve combinatorial explo-
sion but practical resources for cost reduction to de-
velop an evolutionary computation program as a dis-
tributed, parallel system.

Distributed models of evolutionary computation are
mainly classified into two models: island model and
evaluation-distributed model. Island model involves
some subpopulations, and a few solution candidates
immigrating between subpopulations at defined inter-
vals. Island model is a rough-grained model which can
be parallelized by subpopulations and has an advan-
tage in control of search diversification. Evaluation-
distributed model is a fine-grained parallel and dis-
tributed model appropriate for problems which require
much computation time to evaluate a solution can-
didate because evaluation of solution candidates can
easily be parallelized.

In the case using the existing libraries or languages,
although the above models are effective to reduce com-
putation time, developers have to code for paralleliza-
tion procedures such as multi threading, fault toler-
ance and so on

In general, it is difficult to code a distributed, par-
alleled program due to multithreading, message pass-
ing, managing clients, and so on. To reduce the de-
velopment cost of distributed, parallel system, some
libraries for programming languages producing shared
memory or message passing functions are used[1].
There are also other methodologies using compilers,
such as programming languages, macros, directions to
compilers, which are specified to address these prob-
lems reducing the cost of distributed, parallel system
development [2, 3, 4, 5, 6].

Using these libraries or languages is unfortunately
not so easy because of their complicated syntax and
discords between base language and extended mod-
ule. Construction of distributed runtime environment
is also a cumbersome procedure. For example, a de-
veloper has to set up an operating system on personal
computers only for parallel, distributed computation
as a cluster, or install middleware to maintain the sys-
tem’s security level[7].

This paper proposes a programming language
for parallel and distributed computation called
“Espace”[8], and shows that the Espace compiler en-
ables to convert evolutionary computation program
written in Java into distributed, parallel system by
adding a few words of Espace to the program.

2 Programming Language Espace

2.1 Design policy

Design policies of Espace language proposed in this
paper are as follows:

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 369

Espace source code

Entry(Shared object)Entry(Shared object)Entry(Shared object)

Developer
Entry Point(EP)

Domain Unit(DU)
Domain Unit(DU)
Domain Unit(DU)

Http server

Object-Shared Space(OSS)

Domain Unit(DU)Java Web Start(JWS)Espace CompilerJava Compiler

Figure 1: System structure of Espace runtime envi-
ronment

1. Espace utilizes simple, few syntax rules.

2. Espace abstracts distributed and parallel process-
ing function.

3. Espace produces a distributed runtime environ-
ment which can be built up easily.

Espace involves a few simple syntax rules added to
Java. The added syntax rules are mainly invocation
rules of distributed method and access rules to a dis-
tributed object. Therefore, developers do not need
to know how to write a parallel, distributed program
source code in detail.

2.2 System structure

The distributed runtime environment of Espace is
made up of an Object-Shared Space(OSS) server and
its clients. Clients communicate with each other via
reading or writing shared objects called Entry. The
system structure of Espace is shown in Fig. 1. An
Espace program is compiled by an Espace Compiler
into a Java program called Entry Point(EP). At the
same time, EP is conducted with anonymous compu-
tation units called Domain Units(DUs) via Java Web
Start[9]. DU works as computation resource or as a
holder of distributed object. The only operation users
need to do is accessing an HTTP server for deploying
the DU.

2.3 Syntax rules

Developers can allocate or access distributed ob-
jects by inserting the keyword “remote”, which indi-

distribute-statement =

’distribute’

’{’ block-statement* ’}’

[’doing’ ‘{‘ block-statement* ’}’] ;

Figure 2: EBNF definition of distribute statement.

cates that a field modified by the keyword has a re-
mote attribute (remote field) and can be accessed by
any client joining the Espace network.

Invocation syntax rules of distributed method en-
ables developers to write distributed, parallel process-
ing program with extremely reduced cost; adding the
keyword “espace” to distributed methods and invok-
ing them in a “distribute” statement. The EBNF def-
inition of a distribute statement is shown in Figure
2. In a “distribute” section, a method modified by
the keyword has an espace attribute (espace method),
and then each espace method is invoked on parallel
threads. In addition, it is not necessary for develop-
ers to adjust task granularity of parallelization and
implement fault tolerance functions on connection or
unforeseen situation. Processes defined at “doing” sec-
tion are also executed at one time on EP .

The keyword can be used to modify a field. Field
instances modified by the keyword is shared by DUs
while running a “distribute” statement, and the fields
become able to be used in espace method.

3 Application to Image Filter Genera-
tion by Genetic Programming

3.1 Overview

Over the past few years, studies have been per-
formed on image filter generation(IFG) with genetic
algorithm (GA) or genetic programming (GP)[10].
The existing methods generate various filters by com-
bining existing primitive filters. Although filters gen-
erated by GP show better output quality than filters
generated by GA, chromosome size becomes huge in
GP. Uncontrolled chromosome growth, called bloat,
makes filter application time worse, and makes it im-
possible for users to analyze and modify generated fil-
ters. The authors of this study propose a GP based
image filter generation method that tunes numeric pa-
rameters of the primitive filters and restrains surplus
chromosome growth[10].

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 370

3.2 Process Flow

GP for IFG recieves source and objective image sets
as input, and outputs a generated image filter. Each
node in a tree-structured chromosome corresponds to a
basic filter such as smoothing, edge extraction, inverse,
and so on. Some of the basic filters have a parameter
such as binarization, addition, maximization and so
on, and the parameter should be adjusted so that the
basic filter works well.

The process flow of GP for IFG is basically an itera-
tion of recombination of individuals by applying oper-
ators of selection, crossover, and mutation, evaluation
of the individuals, and parameter adjustment in basic
filters.

The parameter adjustment is conducted in a similar
way to local search:

Step 1 Choose RPA individuals randomly.

Step 2 Repeat following Step 3 through 4 SPA times.

Step 3 For each individual i, choose a basic filter and
generate NPA offsprings by changing the param-
eter of the chosen basic filter.

Step 4 Choose the best offspring and replace i by the
best offspring.

In the parameter adjustment, RPA�SPA�NPA times
fitness calculation must be conducted, and this is more
time-consuming than all other processes in the itera-
tion involving evaluation of all individuals.

3.3 Implemantation

We applied Espace to parallelization of GP for IFG.
Here GP for IFG distributed by Espace is called as
DGPIFG . In DGPIFG, EP distributes parameter ad-
justment process for one chromosome to DUs via OSS.
DUs get chromosomes from EP via OSS and return the
result to EP in every generation.

To parallelize existing GPIFG code with Espace,
the following procedure is necessary.

Step1 Add the “espace” keyword to modify the
method defining parameter adjustment processes.

Step2 Add the “distribute” statement outside of the
loop invoking the parameter adjustment method
repeatedly.

Step3 Add the “espace” keyword to variables read in
the parameter adjustment method.

The source code for DGPIFG is shown in Figure3.
Method tuneParam is an espace method, and is ac-
cessed on a distribute statement. Method calFitnessN
is also an espace method, and is accessed on method
tuneParam. Each espace method is executed on DUs.
Field orgFit, pixGs, pixSs, and weight are espace field
and are accessed on calFitnessN. Instances of these
espace fields are assigned to OSS, and shared between
DUs. In addition, it is necessary to change declared
type of an espace field to Object class of Java due to
inhibited number of connections to OSS. If an espace
field were to be decleared as array, each element in the
array would be written to OSS as Entry splitted by di-
mension, consequentry number of connections would
extremely increase causing performance decrement in
the case shown in Figure. 3. It is also nessesary to in-
sert cast operation to espace field. To run the system,
the user starts OSS, DUs, and EP, in this order. Be-
cause DUs and EP automatically search and connect
to OSS, users need not configure network settings.

3.4 Evaluation

The Espace source code shown in Figure. 3 contains
five espace fields, six espace methods, and a distribute
statement. The conversion from Java to Espace was
done by adding 12 keywords and a block, changing 4
declared types and adding 24 cast operators. Although
it was vexatious to add cast operators, the program
structure almost was not changed. It, therefore, seems
resonable to conclude that the source code of DGPIF
is easy to understand for Java programmers.

4 Conclusions

We have proposed a programming language called
Espace which involves simplified syntax rules for dis-
tributed parallel computation. The experimental re-
sult has shown that the Espace compiler enables to
convert an evolutionary computation program written
in Java into distributed, parallel system by adding a
few words of Espace to the program.

In the future we plan to work up experimental im-
plementations of distributed system written in Espace
to evaluate usability of the language.

Acknowledgements

Part of this study was supported by IPA Ex-
ploratory Software Project.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 371

class GPIF gp{
espace Object orgF i t ; // doub le []
espace Object pixGs ; // P i x e l s []
espace Object pixSs ;
espace Object weight ; // doub le [] [] []
void ptNotE () {

int num=(int) (nC∗HIT RATE) ;
int [] t a r g e t s=new int [num] ;
IdvTree tmpElite=null ;
for (int i =0; i<num; i++) {

t a r g e t s [i]=(int) ((nC) ∗Math . random ()
∗0 .99) ;

}
distribute {

for (int i =0; i<num; i++) {
tmpElite =tuneParam (popula [t a r g e t s

[i]] , num) ;
popula [t a r g e t s [i]] = tmpElite ;

}
}
. . .

}
espace IdvTree tuneParam (IdvTree e l i t e ,

int candiNum ,
int prmNum, boolean i sRp l c) {
ca lF i tnes sN (. . .) ;

. . .
}
espace IdvTree ca lF i tnes sN (IdvTree t r e e1

) {
double [] [] [] w = (double [] [] []) weight ;
P i x e l s [] p ix s = ((P i x e l s []) pixGs) ;
P i x e l s [] [] p i xS s l = (P ix e l s [] []) p ixSs ;
double [] o r gF i t l = ((double []) o rgF i t) ;
double f itSum ;
int [] [] [] outPix ;
f itSum = 0 . 0 ;
i f (! t r e e1 . i sCa l cu l a t edF l g ()) {

for (int k = 0 ; k < NUM IMG; k++) {
f l t . in i t Img (p i xS s l [k]) ;
outPix = f i l t e r i n g (t r e e1 . getChromo

()) ;
. . .

}
t r e e1 . s e tF i t n e s s (f itSum / inImgNum) ;
t r e e1 . s e tCa l cu l a t edF lg (true) ;

}
return t r e e1 ;

}
. . .

}

Figure 3: Espace source code example.

References

[1] MPICH2. http://www.mcs.anl.gov/index.php.

[2] Open MP. http://www.openmp.org/drupal/.

[3] Omni OpenMP Compiler Project. http://

phase.hpcc.jp/Omni/.

[4] Philippe Charles, Christopher Donawa, Kemal
Ebcioglu, Christian Grothoff, Allan Kielstra,
Christoph von Praun, Vijay Saraswat, and Vivek
Sarkar. X10: An Object-oriented Approach to
Non-Uniform Cluster Computing. In Proc. 20th
Ann. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applica-
tions (OOPSLA 05), pages 519–538. ACM Press,
2005.

[5] Eric Allen, David Chase, Joe Hallett, Victor
Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
Guy L. Steele Jr., and Sam Tobin-Hochstadt. The
fortress language specification version 1.0, 2008.

[6] Takeshi KAMOGAWA and Takaya YUIZONO.
A proposal of programming Language JavaPAN
with Static Network Scope. The transactions
of the Institute of Electronics, Information and
Communication Engineers. D-I, 88(2):326–329,
2005.

[7] I Foster and C Kesselman. Globus: A metacom-
puting infrastructure toolkit. 11(2), 1997.

[8] Takehiko IWAKAWA, Satoshi ONO, and Shigeru
NAKAYAMA. Development of a Programming
Language Espace for Distributed Parallel Pro-
cessing. Transactions of ISCIE, 19(7), 2006.

[9] Java SE Desktop Technologies - Java Web Start
Technology. http://java.sun.com/javase/

technologies/desktop/javawebstart/index.

jsp.

[10] Masaki MAEZONO, Satoshi ONO, and Shigeru
NAKAYAMA. Automatic Parameter Tuning and
Bloat Restriction in Image Processing Filter Gen-
eration Using Genetic Programming. Transac-
tions of JSCES, 8(20060021), 2006.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 372

