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Abstract: This paper proposes an idea of adaptively using a scalarizing fitness function in evolutionary multiobjective 
optimization (EMO) algorithms. In our former study, we proposed a hybrid EMO algorithm, where we introduced two 
probabilities to specify how often the scalarizing fitness function is used for parent selection and generation update in 
EMO algorithms. In this paper, we use the ratio of non-dominated solutions to specify how often the scalarizing fitness 
function is used in our hybrid EMO algorithm. Through computational experiments on multiobjective 0/1 knapsack 
problems, we show the effectiveness of adaptively using a scalarizing fitness function. 
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problems, scalarizing fitness function, multiobjective 0/1 knapsack problems. 

 
 

I. INTRODUCTION 

Evolutionary multiobjective optimization (EMO) is 
one of the most active research areas of evolutionary 
computation. Most EMO algorithms use Pareto ranking 
to evaluate the fitness of each solution. Whereas Pareto 
ranking-based EMO algorithms usually work well on 
two-objective problems, their search ability is severely 
degraded by the increase in the number of objectives. 
Well-known Pareto ranking-based EMO algorithms such 
as NSGA-II [1] and SPEA [2] do not work well on 
many-objective problems with four or more objectives. 
This is because almost all solutions in each population 
become non-dominated with each other when they are 
compared using many objectives. That is, almost all 
solutions have the same fitness with respect to Pareto 
ranking. On the other hand, Hughes [3] showed that 
multiple runs of single-objective evolutionary algorithms 
(SOEAs) outperformed a single run of EMO algorithms 
in their applications to many-objective problems. In 
some studies, EMO algorithms can outperform SOEAs 
even when they are used to solve single-objective 
problems. It was also reported that better results were 
obtained from transforming single-objective problems 
into multi-objective ones.  

Some related studies suggest that SOEAs and EMO 
algorithms have their own advantages and disadvantages. 
In our former study [4], we hybridized them into a single 
algorithm in order to simultaneously utilize their adva-

ntages. Following this idea, we implemented a hybrid 
EMO algorithm using NSGA-II and a weighted sum 
fitness function. The weighted sum fitness function is 
probabilistically used for parent selection and generation 
update in our hybrid EMO algorithm. We introduced two 
probabilities to specify how often the scalarizing fitness 
function is used for parent selection and generation 
update in our hybrid EMO algorithms. We showed that 
the use of the weighted sum fitness function improved 
the performance of NSGA-II for multiobjective opti-
mization. 

In this paper, we propose an idea of adaptively using 
the weighted sum fitness function in our hybrid EMO 
algorithm. We use the ratio of non-dominated solutions 
to specify how often the weighted sum fitness function is 
used in our hybrid EMO algorithm. The weighted sum 
fitness function is adaptively used for parent selection 
and generation update in this paper. Through compu-
tational experiments on multiobjective 0/1 knapsack 
problems, we show the effectiveness of adaptively using 
the weighted sum fitness function. 

 

II. HYBRID EMO ALGORITHM 

In this section, we explain about our hybrid EMO 
algorithm. In our former study [4], we implemented a 
hybrid EMO algorithm by incorporating a weighted sum 
fitness function into NSGA-II [1]. We introduced two 
probabilities PPS and PGU to specify how often the 
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weighted sum fitness function is used for parent selection 
and generation update, respectively.  

 

1. NSGA-II 
NSGA-II [1] is a well-known and frequently-used 

EMO algorithm with the (µ +λ)-ES generation update 
mechanism. The outline of NSGA-II is as follows: 

 
[NSGA-II] 
Step 1: P = Initialize (P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:    P’ = Parent Selection (P) 
Step 4:    P’’ = Genetic Operations (P’) 
Step 5:    P = Generation Update (PUP’’) 
Step 6: End while 
Step 7: Return Non-dominated (P) 
 

In NSGA-II, each solution in the current population 
is evaluated using Pareto ranking and crowding distance 
in the following manner in Step 3. First, Rank 1 is 
assigned to all the non-dominated solutions in the current 
population. Solutions with Rank 1 are tentatively 
removed from the current population. Next, Rank 2 is 
assigned to all the non-dominated solutions in the 
remaining population. Solutions with Rank 2 are 
tentatively removed from the remaining population. In 
the same manner, ranks are assigned to all solutions in 
the current population. Solutions with smaller rank 
values are viewed as being better than those with larger 
rank values. A crowding distance is used to compare 
solutions with the same rank. The crowding distance of a 
solution is the Manhattan distance between its two 
adjacent solutions in the objective space (for details, see 
[1]). When two solutions have the same rank, one 
solution with a larger value of crowding distance is 
viewed as being better than the other with a smaller value. 

A prespecified number of pairs of parent solutions are 
selected from the current population by binary tour-
nament selection to form a parent population P’ in Step 3. 
An offspring solution is generated from each pair of 
parent solutions by genetic operations to form an off-
spring population P’’ in Step 4. The current population 
and the offspring population are merged to form an 
enlarged population. Each solution in the enlarged popu-
lation is evaluated by Pareto ranking and the crowding 
distance as in the parent selection phase. A prespecified 
number of the best solutions are chosen from the 
enlarged population as the next population P in Step 5. 

2. Weighted sum fitness function 
The weighted sum fitness function of the k object-

ives is as follows: 
 
fitness(x) = w1 · f1(x) + w2 · f2(x) +…+ wk · fk(x)  (1) 
 

where fi(x) is the i-th objective value of x, wi is a non-
negative weight value.  

We generate a set of non-negative integer vectors sa-
tisfying the following relation: w1 + w2 + … + wk = d 
where d is a prespecified integer. In this paper, we 
specify d = 4 for two, three, and four-objective problems. 
On the other hand, we specify d = k for five and six-
objective problems where k is the number of objectives. 
For example, we have five integer vectors: (4, 0), (3, 1), 
(2, 2), (1, 3), and (0, 4) for two-objective problems. For 
three-objective problems, we have 15 integer vectors: (4, 
0, 0), (3, 1, 0), …, (0, 0, 4). For four, five, and six-
objective problems, we have 35, 126 and 462 integer 
vectors, respectively. 

 

3. Hybrid EMO algorithm 
Our hybrid EMO algorithm is the same as NSGA-II 

except for parent selection in Step 3 and generation up-
date in Step 5. When a pair of parent solutions is sele-
cted from the current population, the weighted sum 
fitness function and the NSGA-II fitness evaluation me-
chanism are used with the probabilities PPS and (1− PPS), 
respectively. When another pair of parent solutions is to 
be selected, the probabilistic choice between two fitness 
evaluation schemes is performed again.  

As in the parent selection phase in Step 3, we pro-
babilistically use the weighted sum fitness function in 
generation update phase in Step 5. When one solution is 
to be selected and added to the next population, the 
weighted sum fitness function and the NSGA-II fitness 
evaluation mechanism are used with the probabilities 
PGU and (1− PGU), respectively. When another solution is 
to be selected, the probabilistic choice between two 
fitness evaluation schemes is performed again. 

It should be noted that our hybrid EMO algorithm 
with PPS = 0.0 and PGU = 0.0 is the same as the pure 
NSGA-II [1] since the weighted sum fitness function is 
never used. On the other hand, our hybrid EMO algori-
thm with PPS = 1.0 and PGU = 1.0 is a weighted sum-
based genetic algorithm with the (µ +λ)-ES generation 
update mechanism. In our former study [4], we used 
fixed values PPS and PGU during the execution of our 
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fixed values PPS and PGU during the execution of our fixed 
Table 1. Hyprevolume measure over 50 runs in subsection 3.2. 

 2-500 ( 810× ) 3-500 ( 1210× ) 4-500 ( 1710× ) 5-500 ( 2110× ) 6-500 ( 2510× )
NSGA-II 3.80 (0.0160) 6.53 (0.0440) 1.01 (0.0085) 1.74 (0.0185) 2.60 (0.0286)
HybridPS 3.78 (0.0152) 6.48 (0.0388) 1.00 (0.0081) 1.74 (0.0138) 2.62 (0.0237) 
HybridGU 3.85 (0.0179) 6.71 (0.0410) 1.08 (0.0070) 1.89 (0.0161) 2.91 (0.0297) 
Hybridadapt 3.91 (0.0145) 6.87 (0.0409) 1.11 (0.0094) 1.93 (0.0214) 2.92 (0.0381) 

 
hybrid algorithm. 

In this paper, we adaptively use the weighted sum 
fitness function. In short, we use various values PPS and 
PGU during the execution of our hybrid algorithm. PPS is 
the ratio of non-dominated solutions in the current pop-
ulation in Step 3 whereas PGU is the ratio of non-
dominated solutions in the enlarged population in Step 5. 

 

III. PERFORMANCE EVALUATION 

In this section, we examine the performance of 
adaptively using the weighted sum fitness function. First, 
we compare three versions of our idea in subsection 3.2. 
Next, we compare our idea with our original hybrid 
algorithm [4] in subsection 3.3. 

 

1. Parameter settings 
As test problems, we use a two-objective 500-item, a 

three-objective 500-item, and a four-objective 500-item 
knapsack problem in [2]. These test problems are 
denoted as 2-500, 3-500, and 4-500, respectively. As 
many-objective problems, we generate a five-objective 
500-item (i.e., 5-500) and a six-objective 500-item (i.e., 
6-500) knapsack problem in the same manner as [2]. We 
use the following parameter specifications in this section: 

 
Population size: 200 (i.e., µ = λ = 200), 
Crossover probability: 0.8 (uniform crossover), 
Mutation probability: 1/500 (bit-flip mutation), 
Stopping condition: 400,000 fitness evaluations. 
 
Each algorithm is applied to each test problem 50 

times. As a performance measure, we use the hyper-
volume measure [5] that calculates the volume of the 
dominated region by the non-dominated solution set in 
the objective space. The hypervolume measure is used as 
the diversity and the convergence measure. For the 2-500 
problem, we show the 50% attainment surface [6] in 
order to visually show the behavior of each algorithm. 

 

2. Comparison among three versions of our idea 
In this subsection, we examine the following versions 

of our idea: 
 

HybridPS: The weighted sum fitness function is adap-
tively used for parent selection in Step 3.  

 
HybridGU: The weighted sum fitness function is adap-

tively used for generation update in Step 5. 
 
Hybridadapt: The weighted sum fitness function is adap-

tively used for parent selection in Step 3 and 
generation update in Step 5. 

 
We also use the pure NSGA-II [1] to compare three 

versions of our idea. In Table 1, we show the average 
value and the standard deviation value (in the pare-
ntheses) of the hypervolume measure over 50 runs for 
each problem. The best value and the worst value are 
highlighted by bold and underline, respectively. 

Table 1 shows that the best result for each problem 
was obtained from Hybridadapt. From this table, we show 
the effectiveness of adaptively using the weighted sum 
fitness function for parent selection phase and generation 
update phase. On the other hand, HybridPS did not obtain 
good results for each problem. We cannot observe the 
effect of adaptively using the weighted sum fitness 
function only for parent selection phase. In Fig. 1, we 
show the 50% attainment surface over 50 runs of each 
algorithm: HybridPS, HybridGU, Hybridadapt, and NSGA-II. 
From Fig. 1, Hybridadapt improved the diversity of 
obtained non-dominated solutions. On the other hand, 
HybridPS obtained the similar result with NSGA-II. From 
these results, it is shown that adaptively using the 
weighted sum fitness function only for parent selection 
phase did not improve the search ability of NSGA-II 
whereas adaptively using the weighted sum fitness 
function for generation update phase had a positive effect. 
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Table 2. Hyprevolume measure over 50 runs in subsection 3.3. 
 2-500 ( 810× ) 3-500 ( 1210× ) 4-500 ( 1710× ) 5-500 ( 2110× ) 6-500 ( 2510× )

NSGA-II 3.80 (0.0160) 6.53 (0.0440) 1.01 (0.0085) 1.74 (0.0185) 2.60 (0.0286) 
Hybrid0.5_0.5 3.89 (0.0154) 6.78 (0.0400) 1.08 (0.0069) 1.88 (0.0131) 2.86 (0.0309) 

Weighted Sum 3.95 (0.0121) 6.95 (0.0416) 1.12 (0.0086) 1.93 (0.0193) 2.86 (0.0377) 
Hybridadapt 3.91 (0.0145) 6.87 (0.0409) 1.11 (0.0094) 1.93 (0.0214) 2.92 (0.0381) 
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Fig. 1. 50% attainment surface in subsection 3.2. 
 

3. Comparison with original hybrid algorithm 
In this subsection, we compare our idea Hybridadapt 

with our original hybrid algorithm [4]. In our original 
hybrid algorithm, we use the following parameters for 
PPS and PGU: 

 
PPS: 0.0, 0.5, 1.0, 
PGU: 0.0, 0.5, 1.0. 
 
We examine the 3 × 3 combinations of the 3 values 

of PPS and PGU. Due to the page limitation, we use 3 
combinations of PPS and PGU: PPS = PGU = 0.0, PPS = PGU 
= 0.5, PPS = PGU = 1.0. As stated in subsection 2.3, our 
original hybrid algorithm with PPS = PGU = 0.0 is the 
same as the pure NSGA-II whereas our original hybrid 
algorithm with PPS = PGU = 1.0 is a weighted sum-based 
genetic algorithm with (µ +λ)-ES generation update me-
chanism. We denote the combination of PPS = PGU = 0.5 
as Hybrid0.5_0.5. In Table 2, we show the average value 
and the standard deviation value of the hypervolume 
measure over 50 runs for each problem. From Table 2, 
Hybridadapt obtained relatively good results for each 
problem. Especially, Hybridadapt obtained the best result 
for two problems with five or six objectives. In Fig. 2, 
we show the 50% attainment surface over 50 runs of 
each algorithm: NSGA-II, Hybrid0.5_0.5, Weighted Sum, 
and Hybridadapt. From Fig. 2, adaptively using the 
weighted sum fitness function had relatively good effect 
on the search ability of our original hybrid algorithm. 
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Fig. 2. 50% attainment surface in subsection 3.3. 
 

VI. CONCLUSION 

This paper proposed an idea of adaptively using a 
scalarizing fitness function in our hybrid EMO algorithm. 
We used the ratio of the non-dominated solutions to 
specify how often the scalarizing function is used in our 
hybrid EMO algorithm. Through computational expe-
riments, we showed the effectiveness of our idea. 
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