
Hybridization of Evolutionary Multiobjective Optimization Algorithms
by the Adaptive Use of Scalarizing Fitness Function

Noritaka Tsukamoto, Yuji Sakane, Yusuke Nojima, and Hisao Ishibuchi

Department of Computer Science and Intelligent Systems,
Graduate School of Engineering, Osaka Prefecture University

1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
 (Tel : 81-72-254-9198; Fax : 81-72-254-9915)

({nori@ci., sakane@ci., nojima@, hisaoi@}cs.osakafu-u.ac.jp)

Abstract: This paper proposes an idea of adaptively using a scalarizing fitness function in evolutionary multiobjective
optimization (EMO) algorithms. In our former study, we proposed a hybrid EMO algorithm, where we introduced two
probabilities to specify how often the scalarizing fitness function is used for parent selection and generation update in
EMO algorithms. In this paper, we use the ratio of non-dominated solutions to specify how often the scalarizing fitness
function is used in our hybrid EMO algorithm. Through computational experiments on multiobjective 0/1 knapsack
problems, we show the effectiveness of adaptively using a scalarizing fitness function.

Keywords: Evolutionary multiobjective optimization (EMO) algorithms, multiobjective problems, many-objective
problems, scalarizing fitness function, multiobjective 0/1 knapsack problems.

I. INTRODUCTION

Evolutionary multiobjective optimization (EMO) is
one of the most active research areas of evolutionary
computation. Most EMO algorithms use Pareto ranking
to evaluate the fitness of each solution. Whereas Pareto
ranking-based EMO algorithms usually work well on
two-objective problems, their search ability is severely
degraded by the increase in the number of objectives.
Well-known Pareto ranking-based EMO algorithms such
as NSGA-II [1] and SPEA [2] do not work well on
many-objective problems with four or more objectives.
This is because almost all solutions in each population
become non-dominated with each other when they are
compared using many objectives. That is, almost all
solutions have the same fitness with respect to Pareto
ranking. On the other hand, Hughes [3] showed that
multiple runs of single-objective evolutionary algorithms
(SOEAs) outperformed a single run of EMO algorithms
in their applications to many-objective problems. In
some studies, EMO algorithms can outperform SOEAs
even when they are used to solve single-objective
problems. It was also reported that better results were
obtained from transforming single-objective problems
into multi-objective ones.

Some related studies suggest that SOEAs and EMO
algorithms have their own advantages and disadvantages.
In our former study [4], we hybridized them into a single
algorithm in order to simultaneously utilize their adva-

ntages. Following this idea, we implemented a hybrid
EMO algorithm using NSGA-II and a weighted sum
fitness function. The weighted sum fitness function is
probabilistically used for parent selection and generation
update in our hybrid EMO algorithm. We introduced two
probabilities to specify how often the scalarizing fitness
function is used for parent selection and generation
update in our hybrid EMO algorithms. We showed that
the use of the weighted sum fitness function improved
the performance of NSGA-II for multiobjective opti-
mization.

In this paper, we propose an idea of adaptively using
the weighted sum fitness function in our hybrid EMO
algorithm. We use the ratio of non-dominated solutions
to specify how often the weighted sum fitness function is
used in our hybrid EMO algorithm. The weighted sum
fitness function is adaptively used for parent selection
and generation update in this paper. Through compu-
tational experiments on multiobjective 0/1 knapsack
problems, we show the effectiveness of adaptively using
the weighted sum fitness function.

II. HYBRID EMO ALGORITHM

In this section, we explain about our hybrid EMO
algorithm. In our former study [4], we implemented a
hybrid EMO algorithm by incorporating a weighted sum
fitness function into NSGA-II [1]. We introduced two
probabilities PPS and PGU to specify how often the

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 365

weighted sum fitness function is used for parent selection
and generation update, respectively.

1. NSGA-II
NSGA-II [1] is a well-known and frequently-used

EMO algorithm with the (µ +λ)-ES generation update
mechanism. The outline of NSGA-II is as follows:

[NSGA-II]
Step 1: P = Initialize (P)
Step 2: While the stopping condition is not satisfied, do
Step 3: P’ = Parent Selection (P)
Step 4: P’’ = Genetic Operations (P’)
Step 5: P = Generation Update (PUP’’)
Step 6: End while
Step 7: Return Non-dominated (P)

In NSGA-II, each solution in the current population
is evaluated using Pareto ranking and crowding distance
in the following manner in Step 3. First, Rank 1 is
assigned to all the non-dominated solutions in the current
population. Solutions with Rank 1 are tentatively
removed from the current population. Next, Rank 2 is
assigned to all the non-dominated solutions in the
remaining population. Solutions with Rank 2 are
tentatively removed from the remaining population. In
the same manner, ranks are assigned to all solutions in
the current population. Solutions with smaller rank
values are viewed as being better than those with larger
rank values. A crowding distance is used to compare
solutions with the same rank. The crowding distance of a
solution is the Manhattan distance between its two
adjacent solutions in the objective space (for details, see
[1]). When two solutions have the same rank, one
solution with a larger value of crowding distance is
viewed as being better than the other with a smaller value.

A prespecified number of pairs of parent solutions are
selected from the current population by binary tour-
nament selection to form a parent population P’ in Step 3.
An offspring solution is generated from each pair of
parent solutions by genetic operations to form an off-
spring population P’’ in Step 4. The current population
and the offspring population are merged to form an
enlarged population. Each solution in the enlarged popu-
lation is evaluated by Pareto ranking and the crowding
distance as in the parent selection phase. A prespecified
number of the best solutions are chosen from the
enlarged population as the next population P in Step 5.

2. Weighted sum fitness function
The weighted sum fitness function of the k object-

ives is as follows:

fitness(x) = w1 · f1(x) + w2 · f2(x) +…+ wk · fk(x) (1)

where fi(x) is the i-th objective value of x, wi is a non-
negative weight value.

We generate a set of non-negative integer vectors sa-
tisfying the following relation: w1 + w2 + … + wk = d
where d is a prespecified integer. In this paper, we
specify d = 4 for two, three, and four-objective problems.
On the other hand, we specify d = k for five and six-
objective problems where k is the number of objectives.
For example, we have five integer vectors: (4, 0), (3, 1),
(2, 2), (1, 3), and (0, 4) for two-objective problems. For
three-objective problems, we have 15 integer vectors: (4,
0, 0), (3, 1, 0), …, (0, 0, 4). For four, five, and six-
objective problems, we have 35, 126 and 462 integer
vectors, respectively.

3. Hybrid EMO algorithm
Our hybrid EMO algorithm is the same as NSGA-II

except for parent selection in Step 3 and generation up-
date in Step 5. When a pair of parent solutions is sele-
cted from the current population, the weighted sum
fitness function and the NSGA-II fitness evaluation me-
chanism are used with the probabilities PPS and (1− PPS),
respectively. When another pair of parent solutions is to
be selected, the probabilistic choice between two fitness
evaluation schemes is performed again.

As in the parent selection phase in Step 3, we pro-
babilistically use the weighted sum fitness function in
generation update phase in Step 5. When one solution is
to be selected and added to the next population, the
weighted sum fitness function and the NSGA-II fitness
evaluation mechanism are used with the probabilities
PGU and (1− PGU), respectively. When another solution is
to be selected, the probabilistic choice between two
fitness evaluation schemes is performed again.

It should be noted that our hybrid EMO algorithm
with PPS = 0.0 and PGU = 0.0 is the same as the pure
NSGA-II [1] since the weighted sum fitness function is
never used. On the other hand, our hybrid EMO algori-
thm with PPS = 1.0 and PGU = 1.0 is a weighted sum-
based genetic algorithm with the (µ +λ)-ES generation
update mechanism. In our former study [4], we used
fixed values PPS and PGU during the execution of our

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 366

fixed values PPS and PGU during the execution of our fixed
Table 1. Hyprevolume measure over 50 runs in subsection 3.2.

 2-500 (810×) 3-500 (1210×) 4-500 (1710×) 5-500 (2110×) 6-500 (2510×)
NSGA-II 3.80 (0.0160) 6.53 (0.0440) 1.01 (0.0085) 1.74 (0.0185) 2.60 (0.0286)
HybridPS 3.78 (0.0152) 6.48 (0.0388) 1.00 (0.0081) 1.74 (0.0138) 2.62 (0.0237)
HybridGU 3.85 (0.0179) 6.71 (0.0410) 1.08 (0.0070) 1.89 (0.0161) 2.91 (0.0297)
Hybridadapt 3.91 (0.0145) 6.87 (0.0409) 1.11 (0.0094) 1.93 (0.0214) 2.92 (0.0381)

hybrid algorithm.

In this paper, we adaptively use the weighted sum
fitness function. In short, we use various values PPS and
PGU during the execution of our hybrid algorithm. PPS is
the ratio of non-dominated solutions in the current pop-
ulation in Step 3 whereas PGU is the ratio of non-
dominated solutions in the enlarged population in Step 5.

III. PERFORMANCE EVALUATION

In this section, we examine the performance of
adaptively using the weighted sum fitness function. First,
we compare three versions of our idea in subsection 3.2.
Next, we compare our idea with our original hybrid
algorithm [4] in subsection 3.3.

1. Parameter settings
As test problems, we use a two-objective 500-item, a

three-objective 500-item, and a four-objective 500-item
knapsack problem in [2]. These test problems are
denoted as 2-500, 3-500, and 4-500, respectively. As
many-objective problems, we generate a five-objective
500-item (i.e., 5-500) and a six-objective 500-item (i.e.,
6-500) knapsack problem in the same manner as [2]. We
use the following parameter specifications in this section:

Population size: 200 (i.e., µ = λ = 200),
Crossover probability: 0.8 (uniform crossover),
Mutation probability: 1/500 (bit-flip mutation),
Stopping condition: 400,000 fitness evaluations.

Each algorithm is applied to each test problem 50

times. As a performance measure, we use the hyper-
volume measure [5] that calculates the volume of the
dominated region by the non-dominated solution set in
the objective space. The hypervolume measure is used as
the diversity and the convergence measure. For the 2-500
problem, we show the 50% attainment surface [6] in
order to visually show the behavior of each algorithm.

2. Comparison among three versions of our idea
In this subsection, we examine the following versions

of our idea:

HybridPS: The weighted sum fitness function is adap-
tively used for parent selection in Step 3.

HybridGU: The weighted sum fitness function is adap-

tively used for generation update in Step 5.

Hybridadapt: The weighted sum fitness function is adap-

tively used for parent selection in Step 3 and
generation update in Step 5.

We also use the pure NSGA-II [1] to compare three

versions of our idea. In Table 1, we show the average
value and the standard deviation value (in the pare-
ntheses) of the hypervolume measure over 50 runs for
each problem. The best value and the worst value are
highlighted by bold and underline, respectively.

Table 1 shows that the best result for each problem
was obtained from Hybridadapt. From this table, we show
the effectiveness of adaptively using the weighted sum
fitness function for parent selection phase and generation
update phase. On the other hand, HybridPS did not obtain
good results for each problem. We cannot observe the
effect of adaptively using the weighted sum fitness
function only for parent selection phase. In Fig. 1, we
show the 50% attainment surface over 50 runs of each
algorithm: HybridPS, HybridGU, Hybridadapt, and NSGA-II.
From Fig. 1, Hybridadapt improved the diversity of
obtained non-dominated solutions. On the other hand,
HybridPS obtained the similar result with NSGA-II. From
these results, it is shown that adaptively using the
weighted sum fitness function only for parent selection
phase did not improve the search ability of NSGA-II
whereas adaptively using the weighted sum fitness
function for generation update phase had a positive effect.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 367

Table 2. Hyprevolume measure over 50 runs in subsection 3.3.
 2-500 (810×) 3-500 (1210×) 4-500 (1710×) 5-500 (2110×) 6-500 (2510×)

NSGA-II 3.80 (0.0160) 6.53 (0.0440) 1.01 (0.0085) 1.74 (0.0185) 2.60 (0.0286)
Hybrid0.5_0.5 3.89 (0.0154) 6.78 (0.0400) 1.08 (0.0069) 1.88 (0.0131) 2.86 (0.0309)

Weighted Sum 3.95 (0.0121) 6.95 (0.0416) 1.12 (0.0086) 1.93 (0.0193) 2.86 (0.0377)
Hybridadapt 3.91 (0.0145) 6.87 (0.0409) 1.11 (0.0094) 1.93 (0.0214) 2.92 (0.0381)

Hybridadapt

HybridGU

HybridPS

Maximize f1

M
ax

im
iz

e
 f 2

NSGA-II

17000 18000 19000 20000

17000

18000

19000

20000

Fig. 1. 50% attainment surface in subsection 3.2.

3. Comparison with original hybrid algorithm
In this subsection, we compare our idea Hybridadapt

with our original hybrid algorithm [4]. In our original
hybrid algorithm, we use the following parameters for
PPS and PGU:

PPS: 0.0, 0.5, 1.0,
PGU: 0.0, 0.5, 1.0.

We examine the 3 × 3 combinations of the 3 values

of PPS and PGU. Due to the page limitation, we use 3
combinations of PPS and PGU: PPS = PGU = 0.0, PPS = PGU
= 0.5, PPS = PGU = 1.0. As stated in subsection 2.3, our
original hybrid algorithm with PPS = PGU = 0.0 is the
same as the pure NSGA-II whereas our original hybrid
algorithm with PPS = PGU = 1.0 is a weighted sum-based
genetic algorithm with (µ +λ)-ES generation update me-
chanism. We denote the combination of PPS = PGU = 0.5
as Hybrid0.5_0.5. In Table 2, we show the average value
and the standard deviation value of the hypervolume
measure over 50 runs for each problem. From Table 2,
Hybridadapt obtained relatively good results for each
problem. Especially, Hybridadapt obtained the best result
for two problems with five or six objectives. In Fig. 2,
we show the 50% attainment surface over 50 runs of
each algorithm: NSGA-II, Hybrid0.5_0.5, Weighted Sum,
and Hybridadapt. From Fig. 2, adaptively using the
weighted sum fitness function had relatively good effect
on the search ability of our original hybrid algorithm.

Maximize f1

M
ax

im
iz

e
 f 2

Weighted Sum

Hybridadapt

Hybrid0.5_0.5

NSGA-II

17000 18000 19000 20000

17000

18000

19000

20000

Fig. 2. 50% attainment surface in subsection 3.3.

VI. CONCLUSION

This paper proposed an idea of adaptively using a
scalarizing fitness function in our hybrid EMO algorithm.
We used the ratio of the non-dominated solutions to
specify how often the scalarizing function is used in our
hybrid EMO algorithm. Through computational expe-
riments, we showed the effectiveness of our idea.

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan
(2002), A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE Trans. on Evolutionary
Computation, 6, 2, 182-197.

[2] E. Zitzler and L. Thiele (1999), Multiobjective
evolutionary algorithms: A comparative case study
and the strength pareto approach, IEEE Trans. on
Evolutionary Computation, 3, 4, 257-271.

[3] E. J. Hughes (2005), Evolutionary many-objective
optimization: Many once or one many?, Proc. of
CEC 2005, 222-227.

[4] H. Ishibuchi, T. Doi, and Y. Nojima (2006),
Incorporation of scalarizing fitness functions into
evolutionary multiobjective optimization, LNCS
4193: PPSN IX, 493-502, Springer, Berlin.

[5] E. Zitler and L. Thiele (1998), Multiobjective
optimization using evolutionary algorithms – A
comparative case study, LNCS: 1498: PPSN V, 292-
301, Springer, Berlin.

[6] C. M. Fonseca and P. J. Fleming (1996), On the
performance assessment and comparison of
stochastic multiobjective optimizers, LNCS 1141:
PPSN IV, 584-593, Springer, Berlin.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 368

