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Abstract

In cellular automata, the cells evolve depending on
their own state and the states in their neighborhood,
whereas the cells in extended spiking neural P systems
act according to the number of spikes within the cells
at each discrete time step. In this paper, we show
how the looking for the states of the surrounding cells
from a cell of a cellular automaton can be simulated
by extended spiking neural P systems receiving speci�c
numbers of spikes from the neighboring cells by using
suitable encodings.

1 Introduction

Cellular automata are a well-established model for in-
vestigating and simulating the behavior of complex bi-
ological systems in discrete time steps and in a par-
allel way. Just recently, (extended) spiking neural
P systems have been introduced (e.g., see [1]) aris-
ing from the idea of modeling the signal transmission
between neuronal cells in the brain, e.g., see [2] as
well as [6], [8] and [9]. Whereas the cells in cellu-
lar automata evolve depending on their own state and
the states in their neighborhood, the cells in extended
spiking neural P systems act according to the number
of spikes within the cells at each discrete time step.
Classic variants of cellular automata are based on a
k-dimensional grid structure of the cells, e.g., we men-
tion Conway�s famous game of life (we also refer to
[14] for a thorough discussion of two-dimensional cel-
lular automata). Spiking neural P systems in principle
were de�ned to work on arbitrary underlying graph
structures, which more resembles the concept of gen-
eralized automata networks, e.g., see [3] and especially

[13]. Extended spiking neural P systems are a special
variant of membrane systems (see [10]; for the actual
state of the art in this area, we refer to [15]). In-
spired by the idea of signal transmission in the human
brain, spikes are sent along the axons between cells
(neurons), e.g., see [5] and especially [7] and [11]. The
number of spikes sent to the surrounding cells depends
on the actual contents (the number of spikes) in a spe-
ci�c cell. A spiking neural P system to be �nite means
that, at any moment, the number of spikes in any cell
cannot exceed a given bound. The cells evolve in par-
allel at any time step, and depending on the actual
number of spikes, each cell consumes some spikes and
sends di¤erent numbers of spikes to its neighboring
cells which are accumulated there to be considered in
the next time step. Using suitable encodings, we can
simulate the looking for the states of the surrounding
cells from a cell of a cellular automaton by receiving
speci�c numbers of spikes from these neighbor cells in
the corresponding cell of the simulating extended spik-
ing neural P system. In that way, the function and the
behavior of a cellular automaton can exactly be sim-
ulated by a corresponding extended spiking neural P
system, no matter which is the underlying connection
structure. Extensions of the classic models of cellu-
lar automata can be simulated by suitable extended
spiking neural P systems as well.

2 De�nitions

For the basic elements of formal language theory
needed in the following, we refer to any monograph
in this area, in particular, to [12]. We just list a few
notions and notations:
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N denotes the set of non-negative integers. The
interval of non-negative integers between k and m is
denoted by [k::m]. For a �nite set N , jN j denotes the
cardinality of N .

2.1 ESNP systems with total spiking

We here give a de�nition of a particular kind of ex-
tended spiking neural P systems, i.e., ESNP systems
with total spiking (see [4]). For some original de�ni-
tions we refer to [7] and [1].
An extended spiking neural P system with total spik-

ing (ESNP t system for short) is a construct

� = (V; S;R)

where

� V is a set of cells (or neurons); if V is a �nite
set, then the neurons are uniquely identi�ed by a
number between 1 and m;

� S describes the initial con�guration by assigning
an initial value (of spikes) to each cell;

� R is a set of rules of the form (i; E=! P ) such
that i 2 V (specifying that this rule is assigned
to cell i), E is a regular checking set (the current
number of spikes in the cell has to be from E if
this rule shall be executed), and P is a (possibly
empty) set of productions of the form (l; w) where
l 2 V (thus specifying the target cell), and w 2 N
is the weight of the energy (i.e., the number of
spikes) sent along the axon from cell i to cell l.

Starting from the initial con�guration given by S,
a transition to the next con�guration is performed by
applying one rule (i; E=! P ) in each cell, if the cur-
rent contents of the corresponding cell coincides with
E. (Note that the whole contents of the neuron is lost
as soon as a spiking rule (i; E=! P ) can be applied in
neuron i). If there are more rules to be applied in one
cell, then one is non-deterministically chosen. Hence,
the system works in a sequential way on the level of
the cells, but in a parallel way at the level of the whole
system.
In the following, we will mainly consider bounded

ESNPt systems, where for every cell, the number of
cells from which it may receive an input is bounded
and where at any moment, the number of spikes in it
cannot exceed a bound speci�c for this cell. The cells
evolve in parallel at any time step, and depending on
the actual number of spikes, each cell consumes all of
its spikes and sends di¤erent numbers of spikes to its

neighboring cells which are accumulated there to be
considered in the next time step. An ESNPt is called
�nite, if it is bounded and, moreover, V is �nite.

2.2 Generalized automata networks
and cellular automata

In the following, instead of the basic model of cellu-
lar automata (e.g., see [14]), we will consider a more
general model based on the generalized automata net-
works (GAN) as described in [13].The main di¤erence
lies in the network topology: while the topology of
CA is a d-dimensional lattice, GAN are built on an
arbitrary directed graph.
Here, we de�ne a GAN as a construct

AG = (G;Q; f)

where

� G = (V;E) is a directed graph, V is a set of ver-
tices also called cells, and E is a set of edges,

� Q is a set of states,

� f = ffi j i 2 V g is the transition function, where
fi is the local transition function of cell i which,
depending on the states of the cells j with (j; i) 2
E, determines the new state of cell i.

For a GAN AG, a con�guration at time t is de�ned
as

C(t) = (q1(t); q2(t); :::; qk(t));

where qi(t) 2 Q is the state of cell i at time t. The
evolution of the GAN in time is then given by the
iteration of the evolution operator � : C(t)! C(t+1)
for t = 0; 1; :::, through the simultaneous application
in each cell of the local transition rule f .
Usually we assume the set of states Q to be �nite,

i.e., the cells can only choose from a bounded number
of states, and, moreover, that the in-degree as well
as the out-degree of every vertex (cell) in the graph
G is �nite, too; then such a GAN is called bounded.
If, moreover, V is �nite, too, then the GAN is called
�nite.

Example 1 Consider the GAN AG = ((V;E); Q; f)
with V = f1; :::; ng for some n 2 N, E = f(i; i+ 1) j
1 � i < ng [ f(n; 1)g, let Q be a �nite set of states,
f be the transition function with fi (q) = q, and let S
describe the initial con�guration assigning an initial
value from Q to each cell. The cells are connected in
a simple ring structure by the edges in E;and the local
transition function fi just takes over the state q from
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cell i+1 to cell i (from cell n to cell 1). Hence, the time
evolution of the GAN is periodic with C(t)! C(t+n)
for t = 0; 1; :::, with C(0) = S. The in-degree of every
cell is 1, hence, with V and Q being �nite, AG is �nite.

Obviously, in order to allow for a �nite description,
the graph structure as well as the local transition func-
tions for the cells must follow speci�c restricted rules.
The most typical example for a GAN with uniform
rules is a (bounded, uniform) cellular automaton AC
(CA for short), which is de�ned on a d-dimensional
grid, i.e., V = Nd, d 2 N is the dimension of AC ,

E = f(i; i) ; (i+ r1; i) ; :::; (i+ rn�1; i) j i 2 Ndg;

where n is a �xed parameter determining the neigh-
borhood size, and the rj , 1 � j � n � 1, are �xed
vectors in the d-dimensional space. Hence, instead of
the graph G = (V;E) we may simply de�ne the so-
called neighborhood

U = fr1; r2; :::; rn�1g

and thus write a CA as

AC = (d;Q;U; f)

where the transition function f : Qn ! Q maps the
state of each cell i 2 Nd to another state from Q as
a function of the states of cell i and the cells in the
neighborhood Ui = fi + r1; i + r2; :::; i + rn�1g of cell
i. If Q �as it is usually assumed �is �nite, then, by
the de�nition given above, the CA AC is bounded, but
not �nite. Obviously, there are also many variants of
�nite CA taking only a �nite subspace of Nd as the un-
derlying set of cells, but we do not go into such details
here, as the main result established in the succeeding
section holds true for such a variant just as a special
case of a GAN.

Example 2 Consider the CA AC =
((2; f0; 1g; f(1; 1)g; f) with f(q) = q as in the
�rst example. The uniform environment f(1; 1)g
corresponds with

E = f((i; i) ; (i+ 1; i+ 1)) j i 2 N2g;

hence, the CA AC corresponds with the GAN AG =
((N2; E); f0; 1g; f);which is bounded, but not �nite.
The local transition function fi just takes over the
state q from cell (i + 1; i + 1) to cell (i; i). Hence,
the time evolution of the CA given by the evolution
operator � : C(t) ! C(t + 1) for t = 0; 1; :::, can
be described by saying that the initial pattern given at
time t = 0 is shifted one position to the right and one
position up in every time step.

3 Results

We now present our main result, showing that the
function and the behavior of a bounded generalized au-
tomata network or a cellular automaton can exactly be
simulated by a corresponding extended spiking neural
P system with total spiking (ESNPt system), inde-
pendent of the underlying connection structure of the
GAN.
Using suitable encodings, we can simulate the look-

ing for the states of the surrounding cells from a cell
of a GAN by receiving speci�c numbers of spikes from
these neighbor cells in the corresponding cell of the
simulating ESNPt system.

Theorem 1 Any bounded generalized automata net-
work (GAN) � independent of its underlying connec-
tion structure �can be simulated by a bounded extended
spiking neural P system with total spiking (ESNPt sys-
tem). If the GAN is �nite, then the ESNPt system is
�nite, too.

Proof. The GAN AG = ((V;E); Q; f) with the initial
con�guration S can be simulated by an ESNPt system
� = (V; S0; R) in the following way:
First, we need an encoding function that allows us

to encode all the information that may in�uence the
state of a speci�c cell, i.e., we have to encode the state
of the cell itself as well as the states of all cells from
which it gets the information about their states due to
the connections de�ned by E.
Now let n denote the cardinality of Q, i.e., n is the

number of states used in AG. These n states in Q
can be ordered in a sequence 1; :::; n, and each of these
n numbers can be represented as a string representing
the corresponding number between 1 and n in the dual
system. Let d(n) denote the number of digits needed
to represent the number n in the dual system.
For a speci�c cell i, let the number of input cells

for cell i be denoted by mi and let these input cells j
with (j; i) 2 E be written in a sequence (ji;1; :::ji;mi).
The current states of all these mi input cells of cell
i now have to be represented by a number of spikes
which uniquely determines this speci�c situation from
another one with these cells of � being in other states.
One speci�c way to represent the states of these mi

input cells (ji;1; :::ji;mi) of cell i now is to concatenate
the f0; 1g-strings representing the state of each by d(n)
digits (i.e., with leading zeroes to have a string with
exactly d(n) digits for each cell ji;l; 1 � l � mi). This
string (of exactly d(n) �mi digits 0 or 1) corresponds
with a number that in the ESNPt system � is the
number of spikes representing the states of all its input
cells in a cell i.
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Now let us start with the initial con�guration S0

which in each cell i contains exactly that number
of spikes which represents the state of cell i in S.
The ESNPt system � evolves simulating the tran-
sitions in the given GAN AG by suitable rules in
R for each cell i implementing the local transition
function fi: let y be the number of spikes in cell
i and x = y=2d(n)mi ; for fi(x1; :::; xmi

) and with x
being interpreted as the number encoding the states
x1; :::; xmi as described above we use (i; fxg=! P )
with P being the set of productions containing the
production

�
i; fi(x1; :::; xmi

)2d(n)mi
�
�sending the in-

formation about its new state to cell i itself �as well as�
j; fi(x1; :::; xmi

)2d(n)(p(i;j)�1)
�
for every cell j which

has to receive the information about the state of cell i,
i.e., with (i; j) 2 E; p(i; j) denotes the position of cell
i in the sequence of input cells for cell j. In that way,
the information about the new states of the cells in
the given GAN AG is propagated as the correspond-
ing number of spikes in the ESNPt system �. At any
moment, in each cell i of the ESNPt system � the
corresponding state of the underlying GAN can be re-
covered from the number of spikes y by dividing y by
2d(n)mi .
Obviously, if the underlying GAN AG is �nite, then

by the construction of the ESNPt system � given
above, � is �nite, too.

As a special consequence of the preceding theorem
we obtain the result that the evolution of cellular au-
tomata can be simulated by ESNPt systems.

4 Conclusion

We have shown how cellular automata or even gener-
alized automata networks can be simulated by ESNPt
systems, where the states of the cells are represented
by the corresponding number of spikes.
It is an open question how such a simulation could

also be done by other variants of extended spiking
neural P systems as, for example, by ESNP systems
with decay or thresholds (see [4]).
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