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I. INTRODUCTION 
Francis Frederick’s observation concerning map-

clouring was first submitted by his younger brother, 
Frederic Guthrie, as a mathematical conjecture later 
called the Four-Colour Problem, to his professor, 
August de Morgan in 1852 [1-4]. Since then, the Four-
Colour Conjecture has long been considered to be a 
most difficult unsolved problem until Appel and 
Haken’s (1972, [5,6]) success in proving this conjecture 
by using computer. The question whether or not the 
Four-Colour theorem (FCT) could be proved without 
using computer has since been the next important 
problem remaining to be answered, although Robertson 
et al. (1996) have considerably simplified Appel and 
Haken’s proof [7,8]. 

In this communication, theorems most possibly 
useful for proving the FCT with no use of computer 
were presented and discussed towards prospecting and 
achieving the final proof. A most plausible final proof of 
the FCT without using computer will be published 
elsewhere from this aspect, which is now under 
reviwing (Ohnishi [9,10]. ).  
 

II. PRELIMINARIES: BASIC DEFINITIONS 
   In this section, some basic definitions useful for 
proving the FCT are described.  “▌” denotes the end of 
each definition or theorem, whereas “█” denotes the 
end of each proof. 
  [Definition 2.1](Jordan curve): Jordan curve QQ’ 
is defined as a portion of a closed Jordan curve, C,
cut off by two different points Q and Q’, which  
are called end-points of the Jordan curve QQ’. ▌ 

The next theorem is well known, and is descri-
bed below without proof. 

[Theorem 2.1] (internal and external domains): If
C is a closed Jordan curve on S2, then we have S
=int C + C +ext C, where int C and ext C denote

internal and external domains of C, respectively.  
Let closed internal and external domains be defined
by Int C = int C + C, and Ext C = ext C + C,  
respecttively, then we have S2=Int C +Ext C –C. ▌ 
[Proof] See Ore (1967) [11]. █ 

[Definition 2.2] (graph, spherical graph): Graph 
Γ is defined as a set consisting of a finite set of  
vertices and a finite setof edges. Vertex is defined 
as a point, and edge is defined as a Jordan curve 
connecting and including two vertices (which are  
end-points) P and P’. An edge e, connecting two  
vertices P and P’ is written as e = [P,P’]. <e> is 
defined by <e>=e –P –P’. A vertex P is called to
be adjacent to P’, if a graph Γ has an edge,[P,P’].
If a graph G is embeddable onto a sphere S2, G is
called a spherical graph and is written as G(S2). ▌ 
  [Definition 2.3] (valency): If a vertex P is a  
common end-point of different m edges, then m is 
called valency (or degree) of P, and is written as 
m = val P. ▌ 
  [Definition 2.4] (s-cycle, s-gon, s-path):   A (s-)
cycle is defined by a s-vertex-graph, C=Cs=Cs(e12, 
e23,…,es,1) = P1 + <e12> + P2 + <e23> + … +  
<es-1,s> + Ps + <es,1>. A (s-)path is defined by U
(P1,Ps) = Us(P1,Ps)= Cs(e12,e23,…,es,1) – es,1. Cs is  
also called s-gon (=s-hedron) (poly-gon, di-gon, tri-
angle, tetrahedron=quadrilateral, pentagon, etc.). ▌ 
  From the Definitions 2.1~2.5, U(P1,Ps) is a  
Jordan curve connecting P1 and Ps, and a cycle is 
a closed Jordan curve. 
 [Definition 2.5] (connected graph): If a path U(P,

P’) of a given graph Γ can be found for any pair 
of vertices, P and P’, which belong to Γ, Γ is  
called “connected graph”. ▌ 
  [Definition 2.6] (face): If G(S2) has a s-cycle (= 
s-gon), Cs, where int Cs = ø, Int Cs (= int Cs+Cs) 
is called face (or s-gon face). ▌ 
  Thus we find S2 = int Cs + Cs +ext Cs. 
  [Definition 2.7]((complete) triangulation): If G(S2)
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is a connected graph dividing S2 into exclusively  
triangular faces, G is called “complete triangula- 
tion (of S2)”. If G(S2) = Cs satisfies ext Cs = ø,  
and if G divides Int Cs into exclusively triangular  
faces, G is called “triangulation of s-gon, Cs”. ▌ 

Let P be a vertex of complete triangulation  
of S2, then we easily find val P ≥ 2. 
  [Definition 2.8] (ν-colourable): Graph Γ is called
“vertex ν-colourable” (or simply, ν-colorable), if  
every vertex is coloured with one of the given ν  
colours so that any two vertices adjacent to each  
other are coloured with different colours. If a ν- 
colourable graph G is coloured with μ colours (μ ≤
ν ), the coloured graph is here called “ν-coloured 
graph”,  and is written as colν(G). For an vertex P
∈G, “colν(P) = a” is defined for denoting that the
 vertex P is coloured with a, in colν(G). If a ν- 
colourable graph, G, is not colourable with ν - 1  
colours, G is called “ν-chromatic”. ▌ 
  The next theorem (Theorem 2.2) is well-known 
[2,4,11], and is given here without describing proof. 

[Theorem 2.2]Let T(S2) be an arbitrarily selected
complete triangulation of S2. The four-colour theo- 
rem (FCT) is equivalent to that “Proposition A is  
true”, where Proposition A is given by;  
Proposition A: T(S2) is vertex four-colourable. ▌ 

  [Definition 2.9](Two-faced quadrilateral, Figure 1):
“Two-faced quadrilateral with a diagonal edge e13” 
is defined as a subgraph of G(S2), and is given by
 Q2f = C4

0 + <e13> ⊆ G, where C4
0 = C4(e12,e23, 

e34, e41),eij = [Pi, Pj], e13 ⊆ Int C4
0, and e13 is a  

Boundary edge dividing Int C4 into two triangular  
faces. Q2f is written as Q2f = Q2f(C4

0;e13). If Q2f in 
G(S2) has any edge, e’13 or e’24, satisfying e’13 = 
[P1,P3] ⊆ Ext C4

0，or e’24 = [P2,P4] ⊆ Ext C4
0,  

then the Q2fis called “incomplete quadrilateral”,  
whereas it is called “complete quadrilateral” if  
there is none of such edges. G(S2) having its sub- 
graph Q2f

0 =Q2f(C4
0;e13) is written as G = G(Q2f

0; 
C4

0 ). ▌ 

 
Figure 1. Two-faced quadrilateral, Q2f(C4

0;e13),  
where C4

0 is a 4-cycle (= quadrilateral) given by  
C4

0 = C4(e12,e23,e34,e41), eij = [Pi,Pj], e13 ⊆ Int C4
0. 

{Q2f} is an unavoidable (one-element-)set of Tk(S2), 
a complete triangulation of S2 with k vertices (k≥4). 
See Definition 2.9 and Lemma3.2.1. 
 
  [Definition 2.10](4-coloued graph, Kempe block):
 Let col4

o(G) denote a 4-coloured graph of G(S2),  
coloured with 4 or 3 of the given 4 colours, a, b, 

c, and d. col4
o(G) is also called “4-colouration of 

G”. Furthermore, ab-Kempe blocks (= ab-Kempe  
chains), Kab(Pi) and Kab(Pi, Pj), are defined as con-
nected two-coloured sub-graphs of G, respectively  
having maximum numbers of vertices including Pi 
(for Kab(Pi) ), and both of Pi and Pj (for Kab(Pi,  
Pj) ), where Pi and Pj are different two vertices of
 G. ▌ 

If P is coloured with a in col4
o(G), and is not  

adjacent to any vertex coloured with b, Kab(P)  
consists of exclusively one vertex P.  
 

III. BASIC THEOREMS  
   The following basic theorems are useful for  
proving the FCT. Detailed proofs will be given in 
Ohnishi (submitted, 2009a, 2009b).  
  [Theorem 3.1] For Kab(Pi, Pj) in Definition 2.10,
there exists a 2-coloured path Uab(Pj,Pj) as a sub- 
graph of the 2-coloured graph, Kab(Pi, Pj). ▌ 
[Proof] Evident from the definitions of connected 

graph (Definition 2.5) and vertex 2-coloured graph
(Definition 2.8). █ 
  This theorem means that Pi and Pj are connected
 by a 2-coloured Jordan curve, Uab(Pj,Pj). 
  [Theorem 3.2] Let Tk(S2) be a complete triangu- 
lation of S2, having k vertices (k ≥ 4). Then there 
exists a quadrilateral given by Q2f

k,0 = Q2f(C4
k,0;e13)

⊂Tk, where C4
k,0 = C4(e12,e23,e34,e41), <e13>⊂ int 

C4
k,0, and eij =[Pi, Pj]. Furthermore, Q2f

k,0 satisfies  
val P1 ≥3, val P3 ≥3, val P2 ≥2, and val P4 ≥2. ▌ 
 [Proof] See Ohnishi [9]. █ 
  [Lemma 3.2.1] In Theorem 3.2, a set, {Q2f

k } is
an unavoidable set (See [4] for definition.) of  
Tk (S2), and consists of only one element being a  
quadrilateral. ▌ 
 [Proof] Evident from Theorem 3.2.1. █ 
  [Theorem 3.3] Let Tk(S2), C4

k,0=C4(e12,e23,e34,e41),
 and Q2f

k,0=Q2f(C4
k,0;e13)⊂Tk,, (k≥4) be defined as  

same as in Theorem 3.2,with an additional condi-  
tion that Tk is 4-colourable. If col4

0 (Tk ) = col4(Tk;
Q2f

k,0) is a four-cloured complete triangulation graph
 of Tk coloured with a, b, c, and d, then we can  
consider, without losing generality, a coloration sa- 
tisfying col4

0 (P1) = a, col4
0 (P2) = b, col4

0 (P3) =
 c, and col4

0 (P4) = c or d. We find that col4
0 (Tk)

belongs to either one of the following two cases;  
  case I: There exists Kac(P1,P3) (⊂ col4(Tk;Q2f

0)). 
case II: There does not exist Kac(P1,P3) (⊂ col4

(Tk;Q2f
0)). ▌    

[Proof] See Ohnishi [9]. █ 
  [Definition 3.1] (case I and case II 4-colorations)
 Let col4

Ι(Tk;Q2f
0) and col4

ΙΙ(Tk;Q2f
0) respectively  

denote case I and case II 4-coloured complete tri- 
angulation graph described in Theorem 3.3.  
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IV.  VERTEX-REDUCING COMPLETE    
TRIANGULATION LINEAGE 

[Theorem 4.1] Let Tk(S2), C4
k,0 = C4(e12,e23,e34,e41), 

and Q2f
k,0=Q2f(C4

0;e13)⊂Tk,, (k ≥ 4) be defined as  
same as in Theorem 3.2. Then Q2f

k,0 belongs to  
either one of the following three types;  
type A: Q2f

k,0 is a complete two-faced quadrilateral. 
(val P1≥4, val P3≥4, val P2≥3, val P4≥ ) 

type B: Q2f
k,0 is an incomplete two-faced quadrila- 

teral, in which there exists e’13=[P1,P3]⊆Ext C4
k,0.

(val P1≥4, val P3≥4, val P2≥2, val P4≥2) 
type C: Q2f

k,0 is an incomplete two-faced quadrila- 
teral, in which there exists e’24=[P2,P4]⊆Ext C4

k,0.
(val P1≥3, val P3≥3, val P2≥3, val P4≥3). ▌ 

[Proof] See Ohnishi [10]. █ 
 
 

 
  Figure 2. Vertex-reducing operation f1 and its in

verse operation, f1
-1. See Definition 4.1 and Ohni

shi [10] for dertails. 
 

 
 
  Figure 3. Vertex-reducing operation f2 and its 
 inverse operation, f2

-1. See Definition 4.1. and  
Ohnishi [10] for dertails. 

 
[Definition 4.1] (Vertex-reducing operations of  
quadrilaterals ): For type A and type B quadrilate- 
rals (Q2f

k,0) of Tk(S2), a vertex-reducing operations f1
which converts Tk(S2)=Tk(Q2f

k0;e12) to Tk-1(S2)=Tk-1,1
(U3

k-1,1; Tk) are defined as illustrated in Figure 2.  
Similarly, for type A and type C quadrilaterals, a  
vertex-reducing operation f2, which converts Tk(S2)= 
Tk(Q2f

k,0;e12) to Tk-1(S2) = Tk-1,2(U3
k-1,2;Tk),  are defin

edas illustrated in Figure 3. Since it is evident that
  
These operations are reversible via an intermediate 
state (Tk* = Tk – e13) shown in the figures 2 and 
3, there exist inverse operations f1

-1 and f2
-1 conver-

ting Tk-1 to Tk. These relations are expressed by; 
 Tk-1 = fi(Tk), Tk = fi

-1(Tk), (i = 1,2),  [#4.1] 
or, 
              fi/f-

i
-1 

         Tk     Tk-1  ( i = 1,2),   [#4.2] 
where Tk-1 = Tk-1,i(U3

k-1,i; Tk), Tk = Tk(Q2fk; e13),  
and U3

k-1,i = fi(Q2f
k; e13).  

More simply, we write [#4.2] as； 
              f/f -1 
         Tk   Tk-1  ( i = 1,2).      [#4.3] 
▌ 
Thus we have reached the next theorem;  
[Theorem 4.2] (See Figure 2 and Figure 3): Let  
Tk(S2) = Tk(Q2f

k,0;e13), C4
k,0 =C4(e12,e23,e34,e41), and 

Q2f
k,0=Q2f(C4

0;e13)⊂ Tk,, (k ≥4) be defined as same
 as in Theorem 3.2. Then we have; 
(1) If Q2f

k,0 is type A or type B ( in this case, 
val P1≥ 4, val P3 ≥ 4): A type 1 vertex-reducing  
complete triangulation Tk-1,1 is obtained by f1;  

Tk-1,1 = Tk-1,1(U3
k-1,1;Tk) = f1(Tk-1; Q2f

k,0), 
where Tk-1,1(U3

k-1,1;Tk) denotes that the type 1 com- 
plete triangulation Tk-1,1 [= f1(Tk; Q2f

k,0) ] has a  
2-path given by U3

k-1,1 = U3(e12, e23) = f1(Q2f
k0; Tk),

meaning that U3
k-1,1 is generated from Q2f

k,0 by f1., 
as shown in Figure 2. In Tk-1,1, val P1≥2, val P3≥2,
 val P2≥2 val P4≥2. 
(2) [Figure 2]: If Q2f

k,0 is type A or type C ( in 
this case, val P2≥ 3, val P4 ≥ 3): A type 2 vertex- 
reducing complete triangulation Tk-1,1 is obtained by
 f1;  

Tk-1,2 = Tk-1,2(U3
k-1,2;Tk) = f2(Tk-1; Q2f

k,0), 
where Tk-1,2(U3

k-1,21;Tk) denotes that the type 2 com- 
plete triangulation Tk-1,2 [= f2(Tk; Q2f

k,0) ] has a  
2-path given by U3

k-1,2 = U3(e12, e23) = f2(Q2f
k0; Tk),

meaning that U3
k-1,2 is generated from Q2f

k,0 by f2., 
as shown in Figure 2. In Tk-1,2, val P1≥2, val P3≥2,
 val P2≥2 val P4≥2. 
  Thus we finally have; 
 ( i ) If Q2f

k,0 is type A (i.e.,complete quadrilateral),
 then we have  
      Tk-1,1 = f1(Tk; Q2f

k,0) = Tk-1,1(U3
k-1,1;Tk ), 

      Tk-1,2 = f2(Tk; Q2f
k,0) = Tk-1,2(U3

k-1,2;Tk ). 
( ii ) If Q2f

k,0 is type B, then we have only  
      Tk-1,1 = f1(Tk; Q2f

k,0) = Tk-1,1(U3
k-1,1;Tk ), 

( iii ) If Q2f
k,0 is type C, then we have only  

      Tk-1,2 = f2(Tk; Q2f
k,0) = Tk-1,2(U3

k-1,2;Tk ). 
The vertex-reductions, Tk-1,i = fi(Tk ;Q2f

k,0) = Tk-1,i 
(U3

k-1,i;Tk ) (i = 1,2) in (i),(ii),(iii) are all reversible
 by Tk = Tk (Q2f

k,0 ; e13) = fi
-1(Tk-1,i; U3

k-1,i). Thus T
k (Q2f

k,0 ; e13) can be reconstructed from Tk-1,i(U3
k-1,i;

Tk ) by either or both of f1
-1 and f2

-1. ▌ 
[Proof] Evident from the definitions and theorems  
descibed above. See also Ohnishi [10]. █ 
  [Lemma 4.2.1] For Tk(S2) = Tk(Q2f

k,0;e13) (k ≥ 4) 
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in Theorem 4.2, we find 
             fi/f-

i
-1 

         Tk   Tk-1                         [#4.3a] 
where Tk-1 = Tk-I,i = fi(Tk) for at least either one of
i=1 and i=2. 
and  
  fi(k)/fi(k)

-1
   fi(k-1)/fi(k-1)

-1  fi(k-2)/fi(k-2)
-1  fi(k-s+1)/fi(k-s+1)

-1  
Tk  Tk-1    Tk-2   ………....…   Tk-s 

(1 ≤ s ≤ k-3)  [#4.4] 
where i(k-j) = 1, and/or 2, j = 1,2,…,s. ▌ 
[Proof] Easily proven from #4.2 and Theorem 4.2. 
See Ohnishi [10]. █ 
  [Lemma 4.2.1] In Lemma 4.2.1, we find 
  fi(k)/fi(k)

-1
   fi(k-1)/fi(k-1)

-1  fi(k-2)/fi(k-2)
-1        fi(4)/fi(4)

-1  
Tk  Tk-1    Tk-2   ………....…   T3 

  [#4.5] 
where i(k-j) = 1, and/or 2, j = 1,2,…,k-4, and  

Tk-j-1= fi(k-j)(Tk-j;Q2f
k-j,0), Tk-j = fi(k-j)

-1(Tk-j-1; U3
k-j-1). ▌ 

[Proof] Proven by letting s = k-3, in [#4.4]. █ 
 

V.  TOWARDS FINAL PROOF OF THE   
FOUR COLOUR THEOREM 
[Theorem 5.1] A necessary and sufficient conditio
n for that an arbitrary complete triangulation Tk(S2)
 (with k vertices, k≥4) is vertex 4-colourable is as  
below; 

Under the assumption that Tk-j is vertex 4-colou- 
rable, there exists a 4-coloured graph, col4

0(Tk-j-1),  
(j= 1,2,…,j-3), which can be derived from a hypo- 
thetical 4-coloured graph of Tk-j, given by col4

0(Tk-j),
where Tk-j-1= f(Tk-j; Q2f

k-j,0), f = f1 or f2 (defined by 
Definition 4.1) and Q2f

k-j,0 = Q2f(C4
k-j,0 ;e(k-j)

13). Here 

 
 

 
 

Figure 4. Vertex-reduction of a 4-coloured complete triangulation graph, col4
0(Tk ; Q2f

k,0) in case I. See text  
and Ohnishi [10] for details. 

 
 

 
Figure 4. Vertex-reduction of a 4-coloured complete triangulation graph, col4

0(Tk ; Q2f
k,0) in case II. See text 

and Ohnishi [10] for details. 
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C4
k-j,0 is a 4-cycle of Tk-j, and Q2f(C4

k-j,0 ;e(k-j)
13) is 

a quadrilateral consisting of C4
k-j,0 = C4(e(k-j)

12 
,e(k-j)

23,e(k-j)
34,e(k-j)

41), and e(k-j)
i1,i2= [P(k-j)

i1,P(k-j)
i2]. ▌ 

 
[Proof] For j = 0, we need to proof  
               f/f -1 
      col4

0(Tk)  col4
0(Tk-1).             [#4.6] 

From Theorem 3.3 and Definition 3.1, we find 
 col4

0(Tk) = col4
Ι(Tk;Q2f

k,0) (for case I )     [Eq. 
or col4

ΙΙ(Tk;Q2f
k,0). (for case II , 

and we can consider that col4
0 (P(k)

1)=a, col4
0(P(k)

2)
= b, col4

0 (P(k)
3) = c, and col4

0 (P(k)
4) = b or d, 

without losing generality. 
[I] (See Figure 4) In case I, ∃Kac(P(k)

1, P(k)
3)⊆Ext

 C4
k-j,0, and then there exists a ac-coloured Jordan 

curve path  connecting P(k)
1 to P(k)

3. Accordingly, K
bd(P(k)

4) can be changed into Kdb(P(k)
4), if col4

0 (P(k)

4) = d. Thus we have a 4-colouring of Tk* (= Tk- 
e(k)

13 ) with both P(k)
2 and P(k)

4 with b. Let f1a deno
te the operation converting col4

Ι(Tk;Q2f
k,0) to this   

4-colouring, col4
Ι,1α(Tk*;C4

k,0 ), then we have col4
Ι,1α

(Tk*;C4
k,0 ) = f1a[col4

Ι(Tk;Q2f
k,0)]. It is evident that t

his operation is reversible, and therefore, col4
Ι(Tk ; 

Q2f
k,0) = f1a

-1[col4
Ι,1(Tk*;C4

k,0 )].  
Since col4

0(P(k)
2) =col4

0(P(k)
4) = b, col4

Ι,1(Tk*;C4
k,0) c

an be further modified to the four coloured graph, 
col4

0(Tk-1;U3
k-1,1), where U3

k-1,1 =U3(e(k-1)
4,1, e(k-1)

12).  
Let f1b denote the operation converting col4

Ι(Tk;Q2f
k,

0) to col4
0(Tk-1;U3

k-1,1), as shown in Figure 4. Then
we have col4

0(Tk-1;U3
k-1,1) = f1b[col4

Ι,1α(Tk*;C4
k,0 )] = 

f1b[f1a[col4
Ι(Tk;Q2f

k,0)] ]= f1b∘ f1a[col4
Ι(Tk;Q2f

k,0)] = 
f1[col4

Ι(Tk;Q2f
k,0)],  ( f1 ≡ f1b∘ f1a). Note that every 

vertex in Tk-1,1 shows valency ≥ 2, since Q2f
k,0 is ty

pe A or type B (from Theorem 4.1).  
  It is also evident that f1b is also reversible, and 
we have col4

Ι,1α(Tk*;C4
k,0 )= f1b

-1[col4
0(Tk-1;U3

k-1,1)],  
and therefore, col4

Ι(Tk;Q2f
k,0)= f1a

-1[col4
Ι,1α(Tk*;C4

k,0 )]
= f1a

-1[f1b
-1[col4

0(Tk-1;U3
k-1,1)]] = f1a

-1∘ f1b
-1[col4

0(Tk-1;
U3

k-1,1)] = f1
-1[col4

0(Tk-1;U3
k-1,1)]. Thus for  case I, 

where col4
0 (Tk) = col4

Ι(Tk;Q2f
k,0), we find 

                f1/f1
-1 

      col4
0 (Tk)  col4

0(Tk-1),        [#4.7] 
although col4

0(Tk-1;U3
k-1,) is defined as derived from

 col4
0 (Tk; Q2f

k,0). In other words, for a given Tk(Q2

f
k,0; e(k)

1,3) really exists as proven in Theorem 4.2., 
but the existence of col4

0 (Tk) is an assumption, an
d therefore, the relation [#4.7] could have some me
aning only if col4

0(Tk-1) could exist. 
[II] (See Figure 5) In case II, there does not exista
ny ac-Kempe block satisfying Kac(P(k)

1,P(k)
33)⊆ Ext 

C4
k-j,0 , which means no existence of any ac- 

coloured Jordan curve path connecting P(k)
1 to P(k)

3. 
Accordingly, in Tk*, a conversion of Kac(P3) to Kca
(P3) generates P3 and P1 to be coloured with the s
ame colour, a. Thus, as similarly as in case I, we 
find, for  case II, where col4

0 (Tk) = col4
ΙΙ(Tk;Q2f

k,0),
 we find 
 

               f2/f2
-1 

      col4
0 (Tk)  col4

0(Tk-1),        [#4.8] 
although col4

0(Tk-1) is defined as deried from col4
ΙΙ

(Tk;Q2f
k,0) (See Figure 5). 

  Since col4
0 (Tk;Q2f

k,0) = col4
Ι (Tk;Q2f

k,0) and/or  
col4

ΙΙ(Tk;Q2f
k,0), #4.7 and #4.8 means #4.6 is true,  

if col4
0(Tk-1) could exist.  

 By converting k into k-j, #4.8 proves the Theorem
 5.1, 
             f2/f2

-1 
   col4

0 (Tk-j)  col4
0(Tk--j1).       [#4.8a]   █ 

 
  However, it is important to note that we do not 
know whether or not col4

0 (Tk-1) could exist in #4.8.
 If col4

0 (Tk-1) exists, then we similarly find 
                f/f -1 
      col4

0(Tk-1)  col4
0(Tk-2).       [#4.6a] 

  By repeating similar considerations, we easily  
find an important Theorem; 
[Theorem 5.2] If Tk(S2) mentioned in Theorem 4.1
 is fourcolourable, we find the followings, #4.9 ~ 
#4.10a;  
                f/f -1 
      col4

0(Tk-j)  col4
0(Tk-j-1),       [#4.9] 

        ( j = 0,1,2, …, k-s-1), (s ≤ k-4),  
or, 
          f/f -1                 f/f -1           f/f -1 
col4

0(Tk)  col4
0(Tk-1)  col4

0(Tk-2) …. 
 f/f -1                  f/f -1    

 col4
0(Ts+1)  col4

0(Ts),          [#4.9a]. 
where  

col4
0(Ts) = f[col4

0(Ts+1)] = f2[col4
0(Ts+1)]= …. 

 = fk-s[col4
0(Tk)],                     [#4.10] 

col4
0(Tk) = f -1[col4

0(Tk-1)] =(f -1)2[col4
0(Tk-1)] = ..… 

= (f -1)k-s[col4
0(Ts)].                    [#4.10a] 

 In #4.9/#4.9a, we do not know col4
0(Ts), although 

we can obtain, from Lemma 4.2.1, a s-vertex com-
plete triangulation graph, Ts, deduced from Tk. 
 [Lemma 5.2.1] Based on Theorem 5.2, it follows; 
           fk-s/(f -1)k-s    
   col4

0(Tk)    col4
0(Ts),  (s ≤ k-4),   [#4.10] 

or, col4
0(Ts) = fk-s[col4

0(Tk)], col4
0(Tk) = (f -1)k-s[col4

0
(Ts)]. ▌ 
 [Proof] Evoident from above descriptions. █ 
  Thus we have reached the Final Theorem; 
 [Theorem 5.3] (The Four Colour Theorem): Eve
ry complete triangulation of S2, Tk(S2), is vertex fou
r colourable (k ≥ 3). ▌ 
[Proof] For k (k ≥ 4), let s = 3 in Lemma 5.2.1, 
we find; 
           fk-s/(f -1)k-3    
   col4

0(Tk)    col4
0(T3),           [#4.11] 

or,    col4
0(T3) = fk-3[col4

0(Tk)],         [#4.11a] 
col4

0(Tk) =(f -1)k-3[col4
0(T3)].       [#4.11b]  

#4.11 ~ #4.11b is a special case of Lemma 5.2.1, 
where col4

0(T3) really exists as one of the possible 
4x3x2 (=24) 4-colourings of a triangle, T3(S2), by  
appropriately naming vertices. 
 Thus we can safely conclude that; 
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(1) The necessary and sufficient condition for 
the existence of a 4-coloured complete triangulation,
 col4

0(Tk), is the existence of col4
0(T3), satisfying  

col4
0(T3) = fk-3[col4

0(Tk)]. 
(2)  “The col4

0(T3)” really exists. 
From (1) and (2), Theorem 5.3 is proved.  █    
 

VI. CONCLUTION  
  The essential portion of the proof of the FCT is 
briefly presented. The entire, complete proof will  
be published elsewhere. It is most important that   
the essence of the enormous complexity of the FCT
is beautifully found in the series of the necessary a
nd sufficient conditions given in #4.9a (for s=3). 
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