The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th '09), B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

A Design of Algorithms for Real-Time Generation of Linear-Recursive Sequences on Cellular Automata

Naoki Kamikawa Graduate School of Engineering Univ. of Osaka Electro-Communication Neyagawa-shi, Hatsu-cho 18-8, Osaka, 572-8530, Japan

Abstract

A model of cellular automata (CA) is considered to be a non-linear model of complex systems in which an infinite one-dimensional array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. We study a sequence generation problem on the CA and propose several state-efficient real-time sequence generation algorithms for non-regular sequences. We show that Fibonacci sequence can be generated in real-time by a CA with 5 states. We also study infinite linear-recursive sequences, such as tribonacci, tetranacci and pell sequences generated on the CA.

1 Introduction

A model of cellular automata (CA) was devised originally for studying self-reproduction by John von Neumann. It is now studied in many fields such as complex systems. We study a sequence generation problem on the CA. Arisawa[1], Fischer[2], Korec[3] and Kamikawa and Umeo[5], [6] studied generation of a class of natural numbers on CA. In this paper, we show that Fibonacci sequence can be generated in real-time by a CA with 5 states. We also study infinite linear-recursive sequences, such as tribonacci sequence, tetranacci sequence and pell sequence generated on the CA. We show a design of algorithm for real-time generation of linear-recursive sequences on CA.

2 Real-time sequence generation problem on CA

A cellular automaton consists of an infinite array of identical finite state automata, each located at a positive integer point (See Figure 1).

Figure 1: Cellular automaton.

Each automaton is referred to as a cell. A cell at point i is denoted by C_i , where $i \ge 1$. Each C_i , except for C_1 , is

Hiroshi Umeo Graduate School of Engineering Univ. of Osaka Electro-Communication Neyagawa-shi, Hatsu-cho 18-8, Osaka, 572-8530, Japan

connected to its left- and right-neighbor cells via a communication link. Each cell can know state of its left- and rightneighbor cells via communication link. One distinguished leftmost cell C₁, the communication cell, is connected to the outside world. A cellular automaton (abbreviated by CA) consists of an infinite array of finite state automata $A = (Q, \delta, F)$, where

- 1. Q is a finite set of internal states.
- 2. δ is a function defining the next state of a cell, such that $\delta: Q \times Q \times Q \to Q$, where $\delta(\mathbf{p}, \mathbf{q}, \mathbf{r}) = \mathbf{s}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s} \in Q$ has the following meaning: We assume that at step t the cell C_i is in state \mathbf{q} , the left cell C_{i-1} is in state \mathbf{p} and the right cell C_{i+1} is in state \mathbf{r} . Then, at the next step t+1, C_i assumes state \mathbf{s} . The leftmost cell C_1 is connected to the outside world. The outside world is expressed by *. A quiescent state $\mathbf{q} \in Q$ has a property such that $\delta(\mathbf{q}, \mathbf{q}, \mathbf{q}) = \mathbf{q}$.
- 3. $F \subseteq Q$ is a special subset of Q. The set F is used to specify a designated state of C_1 in the definition of sequence generation.

We now define the **sequence generation problem** on CA. Let M be a CA and $\{t_n | n = 1, 2, 3, ...\}$ be an infinite monotonically increasing positive integer sequence defined natural numbers, such that $t_n \ge n$ for any $n \ge 1$. We then have a semi-infinite array of cells, as shown in Figure 1, and all cells, except for C₁, are in the quiescent state at time t = 0. The communication cell C₁ assumes a special state **r** in Q for initiation of the sequence generator. We say that M generates a sequence $\{t_n | n = 1, 2, 3, ...\}$ in k linear-time if and only if the leftmost end cell of M falls into a special state in $F \subseteq Q$ at time $t = k \cdot t_n$, where k is a positive integer. We call M a real-time generator when k = 1.

3 Generation Algorithms of Linear-Recursive Sequences

In this section, we propose generation algorithm of linear-recursive sequences. First, we show a design of algorithm for real-time generation of linear-recursive sequences on CA. Next, we show that Fibonacci sequence can be generated on a CA with 5 states.

3.1A Design of Algorithm

Let m be any natural number, such that $m \ge 1$. Let k be natural number given, such that $k \geq 1, k < m$. Let $b_1, b_2, \ldots, b_k, c_1, c_2, \ldots, c_k$ be natural number given, such that $b_1, b_2, \dots, b_k \ge 1$, $c_1 < c_2 < \dots < c_k$. Let a_m be kth order linear-recursive sequences, such that $a_m =$ $b_1 \cdot a_{m-1} + b_2 \cdot a_{m-2} + \dots + b_k \cdot a_{m-k}, a_1 = c_1, a_2 = c_2,$ $\ldots, a_k = c_k$. We show a design of algorithm for real-time generation of sequence a_m on CA.

3.2First Order Linear-Recursive Sequences

We propose the generation algorithm for k = 1. It is approved that $a_m = b_1 \cdot a_{m-1}$, $a_1 = c_1$. However, it is limited to $b_1 \ge 2$. Because all terms take c_1 for $b_1 = 1$, and a_m is not an infinite monotonically increasing positive integer sequence. Figure 2 shows a time-space diagram for generation of the term a_m , when the term a_{m-1} is an even number.

Generation of the term a_m is described in terms of 6 waves: a-wave, b-wave, c-wave, d-wave, e-wave and o-wave. The a-wave is generated on C_1 at time t = 0. Figure 3 shows a number of snapshots of the cell configuration at the propagation of the a-wave shown in Figure 2. In Figure 3, state A1, A2 and A3 advance toward the right at

speed 1-cell/3-step in cell space. Therefore, state A1, A2 and A3 which propagate in cell space is called a-wave. A sequence generation algorithm is designed geometrical by using wave which propagates in cell space. The a-wave propagates in the right direction at 1/3 speed. Figure 3 shows a number of snapshots of the cell configuration at the propagation of the a-wave. The a-wave moves to cell C_2 at time t = 1. Afterwards, the a-wave moves by one cell every 3 steps. When we assume $P_a(t)$ to be a function whitch shows the position of the a-wave at time t, it is approved that $P_a(t) = \lfloor \frac{t}{3} \rfloor + 1$. At time $t = a_{m-1}$, cell C₁ is in a state included F and the b-wave is generated on C_1 . The b-wave propagates in the right direction at 1/1 speed, and the b-wave reaches the a-wave. When the a-wave collides with the b-wave, the a-wave keeps propagating, the b-wave is eliminated, the d-wave is generated and the e-wave is generated. When a_{m-1} is an even number, the b-wave collides with the second state of 3 states to compose the awave and the e-wave is generated (See Figure 3). Let r be natural number. When the cell which collides the a-wave with the b-wave is assumed to be cell C_r , it is approved that $r = P_a(a_{m-1} + r - 1) = \frac{a_{m-1}}{2} + 1$. Therefore, the e-wave is generated on cell $C_{\frac{a_{m-1}}{2}+1}$ at time $t = a_{m-1} + \frac{a_{m-1}}{2}$. The e-wave keeps staying on cell $C_{\frac{a_{m-1}}{2}+1}$. The d-wave propagates in the left direction at $1/\overline{1}$ speed, and the dwave reaches the leftmost cell C_1 at time $t = 2 \cdot a_{m-1}$. When the d-wave collides with the leftmost cell C_1 , the d-wave is eliminated and the c-wave is generated. The cwave propagates in the right direction at 1/1 speed, and the c-wave reaches the e-wave at time $t = 2 \dots a_{m-1} + a_{m-1}$ $\frac{a_{m-1}}{2}$. When the c-wave collides with the e-wave, the bwave is eliminated and the d-wave is generated. The dwave propagates in the left direction at 1/1 speed. The d-wave reaches cell C₁ at time $t = 3 \cdot a_{m-1}$. Therefore, Time where the b-, c- and d-waves reciprocate between the leftmost cell C_1 and the e-wave is a_{m-1} steps. The b-, c- and d-waves reciprocate $b_1 - 1$ times between the leftmost cell C_1 and the e-wave (See Figure 2). When the d-wave of times $b_1 - 1$ reaches the cell C_1 , a state of C_1 changes to a state included F at time $t = b_1 \cdot a_{m-1}$.

Figure 4 shows a time-space diagram for generation of the term a_m , when the term a_{m-1} is an odd number. When a_{m-1} is an odd number, the o-wave is generated by the collision of the a-wave and the b-wave. The b-wave collides with the third state of 3 states to compose the a-wave and the o-wave is generated (See Figure 5). When the cell which collides the a-wave with the b-wave is assumed to be cell C_r , it is approved that $r = P_a(a_{m-1}+r-1) = \lfloor \frac{a_{m-1}}{2} \rfloor + 1$. Because a_{m-1} is an odd number, it is approved that $r = \frac{a_{m-1}-1}{2} + 1$. Therefore, the o-wave is generated on cell $C_{\frac{a_{m-1}-1}{2}+1}$. he c-wave propagates in the right direction at 1/1 speed, and the c-wave reaches the o-wave at time $t = a_{m-1} + \frac{a_{m-1}-1}{2}$. When the c-wave collides with the o-wave, the b-wave is eliminated. The d-wave is generated after 1 step. The d-wave propagates in the left direction at 1/1 speed. The d-wave reaches

А

generation

number).

cell C₁ at time $t = a_{m-1} + \frac{a_{m-1}-1}{2} + 1 + \frac{a_{m-1}-1}{2} = 2 \cdot a_{m-1}$. Therefore, Time where the b-, c- and d-waves reciprocate between the leftmost cell C₁ and the o-wave is a_{m-1} steps. The b-, c- and d-waves reciprocate $b_1 - 1$ times between the leftmost cell C₁ and the o-wave (See Figure 4). When the d-wave of times $b_1 - 1$ reaches the cell C₁, a state of C₁ changes to a state included F at time $t = b_1 \cdot a_{m-1}$.

Figure 5: A con guration of generation of the term a_m (when the term a_{m-1} is an odd number).

Figure 4: Time-space diagram for generation of the term a_m (when the term a_{m-1} is an odd number).

The first term $a_1 = c_1$ is generated in an internal state. A state of the leftmost cell C₁ is changed a state included F at time $t = c_1$ by counting the $c_1 - 1$ step by using an internal state. And the b-wave is generated. Therefore, 1st Order Linear-Recursive Sequences can be generated on CA in real-time. In Figure 6, we show a number of snapshots of the configuration for $b_1 = 3$ and $c_1 = 3$ from t = 0 to 29.

3.3 Second Order Linear-Recursive Sequences

Next, we consider the case of k = 2. We propose the generation algorithm of second order linear-recursive sequences which enhance the algorithm described in section 3.2. It is approved that $a_m = b_1 \cdot a_{m-1} + b_2 \cdot a_{m-2}$, $a_1 = c_1$, $a_2 = c_2$. Figure 7 shows a time-space diagram for generation of a second order linear-recursive sequence. The a-wave is generated on C_1 at time t = 0. We assume that

the e- or o-wave is generated on cell $C_{\lfloor \frac{a_m-2}{2} \rfloor + 1}$. At time $t = a_{m-1}$, cell C₁ is in a state included F and the b-wave is generated on C_1 . The b-wave propagates in the right direction at 1/1 speed, and the b-wave reaches the e- or owave generated on cell $C_{\lfloor \frac{a_m-2}{2} \rfloor+1}$. When the e- or o-wave collides with the b-wave, the b-wave keeps propagating and the d-wave is generated. The b-wave propagates, and the b-wave reaches the a-wave. When the a-wave collides with the b-wave, the b-wave is eliminated and the e- or o-wave is generated on cell $C_{\lfloor \frac{a_{m-1}}{2} \rfloor + 1}$. The d-wave propagates in the left direction at 1/1 speed, and the d-wave reaches the leftmost cell C₁ at time $t = a_{m-1} + a_{m-2}$. The b-, c- and dwaves reciprocate b_2 times between the leftmost cell C_1 and the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-2}}{2} \rfloor + 1}$. When the e-or o-wave generated on cell $C_{\lfloor \frac{a_{m-2}}{2} \rfloor + 1}$ collides with the bor c-wave b_2 times, the e- or o-wave is eliminated. At the next, The c- and d-waves reciprocate $b_1 - 1$ times between the leftmost cell C₁ and the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-1}}{2} \rfloor + 1}$. When The b-, c- and d-waves reciprocate b_2 times between cell C₁ and the e- or o-wave generated on cell $C_{\lfloor \frac{a_m-2}{2} \rfloor+1}$ and reciprocate b_1-1 times between cell C₁ and the \tilde{e} - or o-wave generated on cell $C_{|\frac{a_{m-1}}{2}|+1}$, a state of the leftmost cell C_1 changes a state included F. The first some terms and some e- and o-waves are generated in an internal state. For example, Figure 8 shows generation of pell sequence $(a_m = 2 \cdot a_{m-1} + a_{m-2}, a_1 = 1, a_2 = 2).$

Figure 6: A con guration of real-time generation of a rst order linear-recursive sequence $(a_m = 3 \ a_{m-1}, a_1 = 3).$

Figure 7: Time-space diagram for generation of a second order linearrecursive sequence.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th '09), B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

Figure 8: A con guration of real-time generation of pell sequence $(a_m = 2 \ a_m \ _1 + a_m \ _2, a_1 = 1, a_2 = 2)$.

3.4 kth Order Linear-Recursive Sequences

Next, we generalize the generation algorithm described in section 3.3, and propose the generation algorithm of kth Order Linear-Recursive Sequences. Figure 9 shows a time-space diagram for generation of a kth order linearrecursive sequence. The a-wave is generated on C_1 at time t = 0. We assume that the e- or o-waves are generated on cell $C_{\lfloor \frac{a_{m-k}}{2} \rfloor+1}$, $C_{\lfloor \frac{a_{m-k+1}}{2} \rfloor+1}$, \cdots , $C_{\lfloor \frac{a_{m-3}}{2} \rfloor+1}$ and $C_{\lfloor \frac{a_{m-2}}{2} \rfloor+1}$. At time $t = a_{m-1}$, cell C_1 is in a state included $\stackrel{2}{F}$ and the b-wave is generated on C₁. The b-wave propagates in the right direction at 1/1 speed, and the bwave reaches the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-k}}{2} \rfloor+1}$. When the e- or o-wave collides with the b-wave, the b-wave keeps propagating and the d-wave is generated. The bwave propagates by passing the e- or o-waves generated on cell $C_{\lfloor \frac{a_{m-k+1}}{2} \rfloor+1}, \dots, C_{\lfloor \frac{a_{m-3}}{2} \rfloor+1}$, and the b-wave reaches the a-wave. When the a-wave collides with the b-wave, the b-wave is eliminated and the e- or o-wave is generated on cell $C_{\left\lfloor \frac{a_{m-1}}{2} \right\rfloor+1}$. The d-wave propagates by passing the e- or o-waves in the left direction at 1/1 speed, and the dwave reaches the leftmost cell C_1 at time $t = a_{m-1} + a_{m-k}$. The b-, c- and d-waves reciprocate b_k times between the leftmost cell C_1 and the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-k}}{2} \rfloor + 1}$. When the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-k}}{2} \rfloor + 1}$ collides with the b- or c-wave b_k times, the e- or o-wave is eliminated. At the next, The c- and d-

Figure 9: Time-space diagram for generation of a kth order linear-recursive sequence.

waves reciprocate b_{k-1} times between the leftmost cell C_1 and the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-k+1}}{2} \rfloor + 1}$, reciprocate b_{k-2} times between the leftmost cell C_1 and the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-2}}{2} \rfloor + 1}$, \cdots , reciprocate b_2 times between the leftmost cell C_1 and the eor o-wave generated on cell $C_{\lfloor \frac{a_{m-2}}{2} \rfloor + 1}$ and reciprocate $b_1 - 1$ times between the leftmost cell C_1 and the e- or o-wave generated on cell $C_{\lfloor \frac{a_{m-1}}{2} \rfloor + 1}$. At time $t = a_m =$ $b_1 \cdot a_{m-1} + b_2 \cdot a_{m-2} + \cdots + b_k \cdot a_{m-k}$, a state of the leftmost cell C_1 changes a state included F. The first some terms and some e- and o-waves are generated in an internal state. For example, Figure 10 shows generation of tetranacci sequence $(a_m = a_{m-1} + a_{m-2} + a_{m-3} + a_{m-4}, a_1 = 1, a_2 =$ $2, a_3 = 4, a_4 = 8$).

Figure 10: A conguration of real-time generation of tetranacci sequence $(a_m = a_{m-1} + a_{m-2} + a_{m-3} + a_{m-4}, a_1 = 1, a_2 = 2, a_3 = 4, a_4 = 8).$

3.5 Fibonacci Sequence

In this section, we show real-time generation algorithm of Fibonacci sequence. In a past research, Arisawa showed that Fibonacci sequence can be generated in 2 linear-time by a CA with 9 states. However, real-time generation algorithm of Fibonacci sequence on CA is not exist. A consists of an infinite array of finite state automata $A = (Q, \delta, F)$, where $Q = \{Q, A, B, C, D\}$, $F = \{A\}$. We show that Fibonacci sequence can be generated in real-time by a CA with 5 states that is given in Table 1. In Figure 11, we show a time-space diagram for real-time generation of Fibonacci sequence.

Table 1: Transition rules for real-time generation of Fibonacci sequence.

Q		Right State					IΓ	Δ		Right State						B		Right State				
		Q	A	в	С	D		^		Q	A	в	С	D		1	,	Q	A	в	С	D
Left State	Q	Q	Q	Q	С	Q			Q		Q	Q		Q	Γ	Q	Q				В	D
	А	В		Q	D				А			А	С				A	С	С	С	D	
	в	Q						I efi	в				A			Left	в	С				
	С	Q			D			Stat	С				D			State	С	С		в		
	D	В						e.	D	A	в	A	A	A	1		D	С	в	в	В	В
	*	0	0		А	0			*	0		A	А	0			*					
		~	~			~				~				~		_						
	_	~	~ D'-	1				_	_	~	D'-											
		~	Rig	ht St	ate			Γ	<u> </u>	~	Rig	ht St	ate									
		~ Q	Rig A	ht St B	ate C	D		Γ)	~ Q	Rig A	ht St B	ate C	D	-							
	2	2 Q D	Rig A D	tht St B Q	ate C	D D		E) Q	Q	Rig A	ht St B	ate C	т D С								
	Ç A	2 0 D	Rig A D	ht St B Q Q	c C	р D С		Γ) Q A	2 Q C	Rig A	ht St B A	ate C	р С А					I	I		1
Left	Q A B	Q D D D	Rig A D	ht St B Q Q	C C	р D С С		L) Q А В	2 Q C D	Rig A	ht St B A C	ate C	р С А								
Left Stat	Q A B C	2 D D D D	Rig A D	Int St B Q Q C	C C C C	р р с с с		L Left Stat	Q A B C	2 Q C D C	Rig A A	ht St B A C	ate C D	р С А D				<u> </u>				1
Left State	Q A B C D	P D D D A	Rig A D	Int St B Q Q C D	C C C C D	р р с с с р		L I aft State	Q A B C D	2 Q C D C B	Rig A A D	ht St B A C	C D D	D С Д D				<u></u>	I			

Real-time generation of Fibonacci sequence is described in terms of 5 waves: a-wave, b-wave, d-wave, we-wave, wowave. Fibonacci sequence is 2nd linear-recursive sequence. Therefore, When each the we- or wo-wave collide with the b- or c-wave 1 time, the we- or wo-wave is eliminated. The initial configuration is the leftmost cell C_1 takes state D and other cells take a quiescent state Q. At time t = 0, the a-wave is generated on the leftmost cell C_1 . The a-wave propagates in the right direction at 1/3 speed. State B, State C and State D are used for the propagation of the a-wave. At time t = 0, $\delta(C, Q, Q) = B$ are applied in cell C₂. At the next step, a state of C_2 changes to B. At time t = 1, $\delta(\mathbf{A}, \mathbf{B}, \mathbf{Q}) = \mathbf{C}$ are applied in cell C₂. At the next step, a state of C₂ changes to C. At time t = 2, $\delta(A, C, Q) = D$ are applied in cell C_2 . At the next step, a state of C_2 changes to D. At time t = 3, $\delta(D, Q, Q) = B$ are applied in cell C₃. At the next step, a state of C_3 changes to B. The a-wave propagates by repeating the application of these transition rules. State A and State D are used for the propagation of the b-wave. State C is used for the propagation of the d-wave. The first 5 terms, the we-wave generated on cell C_5 and the d-wave to generate the 6th term are generated with an internal state. At time t = 11, the d-wave is generated on cell C_3 . The d-wave propagates in the left direction at 1/1 speed, and reaches the leftmost cell C_1 . When the d-wave reaches the leftmost cell C_1 , $\delta(*, Q, C) = A$ are applied in cell C_1 . At time t = 13, a state of C_1 changes to A, and the b-wave is generated. The b-wave propagates in The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th '09), B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

Figure 11: Time-space diagram for real-time generation of Fibonacci sequence.

the left direction at 1/1 speed, and reaches the we-wave generated on cell C₅ at time t = 17. When the we-wave collides with the b-wave, the we-wave is eliminated, the dwave is generated and the b-wave keeps propagating. The d-wave reaches the a-wave. When the a-wave collides with the b-wave, the b-wave is eliminated, the wo-wave is generated. The d-wave generated on cell C₅ reaches the leftmost cell C₁ at time t = 21. When the d-wave reaches the leftmost cell C₁, a state of C₁ changes to **A**, and the b-wave is generated. Therefore, Fibonacci sequence can be generated by repeating the propagation of 5 waves. We have implemented the algorithm on a computer. We have tested the validity of the rule set from t = 0 to t = 20000 steps. We obtain the following theorem. In Figure 12, we show a number of snapshots of the configuration from t = 0 to 36.

4 Conclusions

We have studied a sequence generation problem on CA. A design of algorithm for real-time generation of linearrecursive sequences on CA has been given. We have shown that Fibonacci sequence can be generated in real-time by a CA with 5 states. A future study in sequence generation problem on CA is to compare sequence generation power of CA and sequence generation power of 1-bit inter-cellcommunication CA.

Figure 12: A con guration of real-time generation of Fibonacci sequence.

References

- M. Arisawa; On the generation of integer series by the one-dimensional iterative arrays of finite state machines (in Japanese), The Trans. of IECE, 71/8 Vol. 54-C, No.8, pp.759-766, (1971).
- [2] P. C. Fischer; Generation of primes by a one-dimensional realtime iterative array. J. of ACM, Vol.12, No.3, pp.388-394, (1965).
- [3] I. Korec; Real-time generation of primes by a one-dimensional cellular automaton with 9 states. *Proc. of MCU '98*, pp.101-116, (1998).
- [4] N. Kamikawa and H. Umeo; Some Algorithms for Real-Time Generation of Non-Regular Sequences on One-Bit Inter-Cell-Communication Cellular Automata, SICE Annual Conference 2007, pp.953-958, (2007).
- [5] N. Kamikawa and H. Umeo : Some state-efficient algorithms for real-time generation of non-regular sequences on cellular automata. The Thirteenth International Symposium on Artificial Life and Robotics (AROB 13th '08), pp.47-50, (2008).
- [6] N. Kamikawa and H. Umeo : A Note on Sequence Generation Power of Two-States Cellular Automata. SICE Annual Conference 2008, pp.3315-3320, (2008).