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Abstract
We have composed a simulation method for the reaction-diffusion-convection model of chemical reactions by

synthesizing ARMS and the Lattice Boltzmann Method (LBM); LBM is a discrete expression of the Navier-Stokes
Equation. keywords: Artificial Chemistries, Reaction diffusion and convection system, Lattice Boltzmann Method,
Belousov Zhaboyinskii reaction, Abstract Rewriting System on Multisets (ARMS)

Abstract Rewriting System on Multisets, ARMS

ARMS proposed in 1996 [7], it relates to theoretical chemistry[2] and computational algebra [6], [5] An ARMS
is a construct Γ = (A,w,R), where A is an alphabet, w is a multiset present in the initial configuration of the
system, and R is the set of multiset rewriting rules.

Let A be an alphabet (a finite set of abstract symbols). A multiset over A is a mapping M : A 7→ N, where N is
the set of natural numbers; 0, 1, 2,. . . . For each ai ∈ A, M(ai) is the multiplicity of ai in M , we also denote M(ai) as
[ai]. We denote by A# the set of all multisets over A, with the empty multiset, ∅, defined by ∅(a) = 0 for all a ∈ A.
A multiset M : A 7→ N, for A = {a1, . . . , an} is represented by the state vector w = (M(a1),M(a2), . . . ,M(an)),
w. The union of two multisets M1, M2 : A 7→ N is the addition of vectors w1 and w2 that represent the multisets
M1, M2, respectively. If M1(a) ≤ M2(a) for all a ∈ A, then we say that multiset M1 is included in multiset M2 and
we write M1 ⊆ M2. A reaction rule r over A can be defined as a couple of multisets, (s, u), with s, u ∈ A#. A set
of reaction rules is expressed as R. A rule r = (s, u) is also represented as r = s → u. Given a multiset s ⊆, the
application of a rule r = s → u to the multiset w produces a multiset w′ such that w′ = w − s + u. Note that s
and u can also be zero vector (empty). The reaction vector, νji denotes the change of the number of ai molecules
produced by one reaction of rule rj .

f Algorithm of DARMS In Deterministic Abstract Rewriting System on multisets (DARMS), reaction rules
are applied in maximally parallel and deterministic way. Hence, the DARMS accommodates P Systems, while it
has background in theoretical chemistry [8].

Step 0(Initialization). The time t is set to 0 and the set of vectors V = (δ1, δ2, ..., δN ) (j = 1, 2, ...,m), expressing the
stoichiometric change of each species, are initialized. Then all inputs of the system are assigned to their respective
variables, X(a1), X(a2), ..., X(aN ) are set to the initial quantities of species; k1, ..., km to set m rate constants
corresponding to the m reactions; tstop to the ending instant of simulation; set the value of ∆; Step 1(Calculation
of state change vector Λt). According to reaction rules, stoichiometric change of each specie λi is calculated as well
as the state change vector; Λt = (λ1, λ2, ..., λN ) is calculated, where λi =

∑m
j=1 νjivjx(t)∆.

Step 2(System update and branching). The quantity of each species and t is updated, by using Λt and ∆: x(t) =
x(t − ∆) + Λt−∆, t := t + ∆. If t ≥ tstop or if there are no reactions left in the reactor, the simulation is stopped
and the results are sent to the output stream. Otherwise, the simulation returns to Step 1. In order to simulate
pattern formation, we compose cellular automata by using the ARMS and call it Cellular Automata of Abstract
Rewriting System on Multisets (CARMS)[8]. As for the calculation of diffusion, we use conventional explicit scheme
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of difference method to solve partial differential equation of diffusion and for the calculation of convection, we use
the Lattice Boltzmann Method [4].

Figure 1: Time evolution of chemicals: Each line composed of the difference of the time evolution of concen-
tration of X (top), Y (middle) and Z (bottom) in the CARMS, where, time evolution starts from right toward left.
Blue illustrates that the concentration is high, while white, low and τ = 1.0 × 104

Lattice Boltzmann Method (LBM)

The lattice Boltzmann equation (LBE) method is emerging as a physically accurate and computationally viable
tool for simulating laminar and turbulent flows. On the theoretical front, rigorous mathematical proof now exists
demonstrating that the lattice Boltzmann method (LBM) is a special finite difference scheme of the Boltzmann
equation that governs all fluid flows (the Navier-Stokes equation also has its basis in the Boltzmann equation).

The basic LBE for a single-component medium consists of two basic steps: collision and advection. The particle
distribution function is thermalized locally through collision processes and advection to the closest neighboring
sites occurs according to a small set of discrete particle velocities. The LBE proposed here is the lattice Boltzmann
scheme with BGK approximation [8]; nα(x + eαδt, t + δt) = nα(x, t) − 1

τ [nα(x, t) − n
(eq)
α (x, t)] where nα is the

number density distribution function with discrete velocity eα, n
(eq)
α is the equilibrium distribution function and

τ is the relaxation time (towards equilibrium) which determines the viscosity. The time-step size is δt, which is
the time taken for the advection process to be completed. For the sake of simplicity without losing generality,
we adopt the nine-velocity model. Then the equilibrium distribution function for isothermal field is given as
n
(eq)
α = wαn[1+ 1

c2
s
(eα ·u)× 1

2c4
s
(eα ·u)2− 1

c2
s
u2] in which the discrete particle velocities eα and the weighting factor

wα (α = 0,1,2,· · ·,8) are

eα =







(0, 0) α = 0
(cos[(α − 1)π/2]), sin[(α − 1)π/2] α = 1, 2, 3, 4
(cos[(α − 4)π/4]), sin[(α − 5)π/2 + π/4] α = 5, 6, 7, 8

(1)

and

eα =







4/9 α = 0
1/9 α = 1, 2, 3, 4
1/36 α = 5, 6, 7, 8

(2)

respectively. The sound speed is wα = 1/
√

3(δx/δt) with δx being the lattice constant of the underlying square
lattice. The macroscopic quantities, such as particle density n, mass density ?? and mass velocity u are given by
n =

∑

α nα ρ = mn ρu = m
∑

nαeα where m is the molecular weight (for more detail of the LBM, refer [4]).
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Figure 2: Effectiveness of the convection The difference of the time evolution of concentration of Z in the
CARMS, where time evolution starts from right toward left. Blue illustrates that the concentration is high, while
white, low. The effect of convection is changed; the value of τ denotes the degree of effectiveness of the convection,
as the τ is getting large, the effectiveness becomes large. Each line illustrates when τ = 10 (top), τ = 1.0 × 104

(middle), τ = 1.0 × 107 (bottom), respectively

X,Y,H
k1→ 2W : (r1),

A, Y, 2H
k2→ X,W : (r2),

2X
k3→ A,W,H : (r3),

A,X,H
k4→ 2X, 2Z : (r4),

B, Z
k5→ 0.5Y : (r5).

Table 1: Oregonator

Lattice Boltzman Equations for Reaction flow In a reacting flow, the state of the fluid at any given point
in space and time can be completely specified in terms of fluid velocity, composition vector (either in terms of mass
fraction or concentration). We will need to develop the LBE for all these variables. For generating a background
flow, the conventional LBM sub-steps of collision (relaxation) and streaming (convection) are used. However for the
concentration fields, there is an extra sub-step between collision and streaming sub-steps to account for reaction-
diffusion and convection. This is identical to the time-splitting approach used in continuum methods for chemically
reacting flows.
Flow FIeld The background flow-field is obtained using the following stencil for partial pressure pα(x+eα, t+1) =
pα(x, t) − 1

τp
[pα(x, t) − p

(eq)(x,t)
α ] where p

(eq)
α = wαp[1 + 3(eα · u) + 9

2 (eα · u)2 − 3
2u2] The total pressure p(= ρc2s)

and the fluid velocity are calculated using p =
∑

α pαu = 1
p

∑

α ealphapα This is the velocity used for determining
the equilibrium distribution functions in temperature and concentration fields.
Concentraton fields For concentration field, there is an extra computational sub-step, reaction and diffusion by
using the DARMS and CARMS besides conventional computational sub-steps of collision and advection. Collision
of chemical specie i Y i

α(x, t) = Y i
α(x, t)− 1

τi
[Y i

α(x, t)−Y
i(eq)(x,t)
α ] where Y i denotes the concentration of chemical

specie i, Y
i(eq)
α = wαY i[1+3(eα ·u)+ 9

2 (eα·)u)2− 3
2u2] and Y i =

∑

α Y i
α, Relaxation time-constant τ is determined

by thermal diffusivity and τi’s are determined by the diffusivity of corresponding species.

Simulation of the Oregonator

The Oregonator scheme is outlined in Table 1: In this paper, a combination of Tyson’s ”Lo” and Field-Főrsterling
values (TFF parameter) are used [8]: k1 : 106M−2S−1, k2 : 2M−3S−1, k3 : 2 × 103M−1S−1, k4 : 10M−2S−1, k5 :
B × 2 × 10−2S−1, where M stands for one molar, and S stands for a second.
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Results of the simulation We take the non-slip boundary condition (the velocities of particles which hit the wall
are inverted after the collision). The condition of the simulation is described as follows; the amount of computation
steps is 20,000, ∆ = 0.01, τ = 10, 1.0×104, 1.0times107, the diffusion constants D obtained by chemical experiments
[8]; (cm2 / sec.) of X,DX and Z,DZ are 1.5 × 10−5 and DX = 0.9 × 10−5.

It is assumed that the size of reactor in the CARMS is a 6cm × 6cm square, where 50 × 50 DARMSes are
placed. So, the distance between DARMSes is ∆x = 6

50cm. In the chemical experiment of BZ reaction, usually
a excitation point is generated by stinging a sliver stick, which evokes oxidation reaction. In order to express the
generation of the excitation point, we change the concentration of X and Y are smaller, while that of Z is 100
times larger.

The results of simulation of the Oregonator illustrate that the CARMS with reaction, diffusion and convection
exhibits typical chemical wave spatial pattern of the Oregonator on every chemical specie X, Y and Z.

Next, we change effectiveness of the convection. Since the value of τ denotes the effectiveness, we change
τ = 10 (the effectiveness is strong), τ = 1.0 × 104 (middle) and τ = 1.0 × 107 (weak). And we confirmed that
the effectiveness of the convection change the spatio-temporal pattern of chemical reaction (figure 2). When the
effectiveness is strong (the top line in the figure 2), since the convection was strong, the reactor was well stirred
and spatial patterns were excluded, but temporal patterns were preserved. And when the effectiveness is middle
(the middle line in the figure), there emerged spatio-temporal pattern, however, its pattern was different from the
case when the effectiveness is weak. When the effectiveness of convection is weak, it is almost same to the system
only with reaction and diffusion. We confirmed that when the effectiveness of convection is weak, its pattern (the
bottom line in the figure) is similar to the ARMS with reaction-diffusion.
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[6] G. Păun, Computing with membrane, J. Comput. Systems Sci., 61(1):108-143, Elsevier, 2001.

[7] Y. Suzuki, S. Tsumoto, and H. Tanaka, Analysis of Cycles in Symbolic Chemical System based on Abstract
Rewriting System on Multisets. Proceedings of Artificial Life V, pp. 482-489. MIT press, 1996.

[8] M. Umeki and Y. Suzuki, A Simple Membrane Computing Method for Simulating Bio-Chemical Reactions,
Computer and Informatics, 27, 529-550, 2008.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 280




