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Abstract:  A 2x2 matrix operator F=(aij), satisfying a harmonic oscillation-type operator equation, F2x=-ω2x, 
(where x= t(x1(t), x2(t)), was obtained by letting a22= -a11 and a12a21 = -(ω2+a11

2). For aij = const. or = aij (t), and for  
some cases of aij = aij(x1, x2, t), general solutions of F2x= -ω2x were obtained, discussed, and applied to some cases.  
Mathematical relationship between F2x = -ω2x and d2x/dt2 = -ω2x, where dx/dt = Fx, was also analyzed. An  
application was made to Lotka-Voltera dynamic system, where a11 = r1-αx1-βx2, a12= -ax1, a21 = a’x21, a22 = -a11.  
Finally, this type of Lotka-Volterra operator equation was found to have a trajectory given by an ellipse (for C >  
0 ), (X1 - X10) 2/(C/κ1) + (X2 - X20)2/(C/κ2) =1, where ,)//])}2/()[{( 2

02101
22 hDxxhDX ii κσβα ++−±=  (i=1,2), in which  

(σ1,σ2) = (1,-1), h = αβ - aa’, D0=(α2+β2)2 + 4h2, κi =(α2+β2+D0
1/2)/2, C= (r1

2/4){(α v11 +β v21)2/κ1 + (α v12+β v22)2/κ2 }  
– (r1

2 + ω2) . Schroedinger equation was also discussed from this aspect of generalized harmonic oscillation. 
 
   Keywords: harmonic oscillator system, operaror equation, Lotka-Volterra equation. 
 

1. Introduction 
 
 Lotka-Volterra differential equation system has 
long been analyzed from various aspects in many 
different and interdisciplinary scientific fields 
(Reijenge, 2002; Hofbauer & Sigmund, 1998). A 
well-known typical differential equation system 
of Lotka-Volterra type is given by 
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                                  [Eq.1] 
where x = t(x1, x2), and  

r = r1 – α1x1 – β1x2,              [Eq.1b] 
r’ = r2 – α2x1 – β2x2,.             [Eq.1c] 

In Eqs.1-1b, x1 and x2 denote the number of 
individuals of preys and predators, respectively, 
and, r and –r’ denote the rate of the increase in the 
number of prey and predator individuals, 
respectively, both of which depend on t. For i =1 
and 2, ri, iiaa βα ,,, ′ are constants. 
  In order to analyze this system in relation to 
harmonic oscillation system, let us consider a 2 x 
2 real matrix operator F, given by 

   F = 2,2)( ija
d
= t( (a11,a12), (a21,a22) ) 
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and  
Q = (qij)2,2 = F2,                  [Eq.3] 

satisfying  
   Qx = F2x = -ω2x, (ω 2 > 0)          [Eq.4] 
in which x denotes a real vector, x= t(x1(t),x2(t)), 
where t denotes transpose, and ija are either 

constants (in simpler cases) or functions of x1(t), 
x2(t), and/or t (i.e., aij=aij(x1,x2,t), in more general 
cases).  Eq.4 means that 2ω− (< 0) is an 
eigenvalue or eigenfunction of Q.  
From Eqs.2-4, eigenequation of Q is given by 
g(κ) = g( 2ω− )  
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  = (a11+a22)2ω2 + {ω2 - (a11a22 - a12a21)} 2 

= 0,                             [Eq.5] 
where κ (=-ω2) is an eigenvalue of Q (= F2). 
Accordingly, the necessary and sufficient 
condition for the existence of non-zero solution x 
of the operator equation, Eq.4, is given by Eq.5. 
Since ω2 > 0, we find, from Eq.5 and Eq.6, that  

  a11 + a22 = 0,                     [Eq.6] 
and 
   ω2 - (a11a22 - a12a21) = 0.           [Eq.7] 
Eqs.6-7 bring about 
   ω2 + (a11

2 + a12a21) = 0.           [Eq.8] 
We easily find  
    0,0 2112 ≠≠ aa ,                 [Eq.9] 
because Q = F2 = t( (a11

2,0), (0,a22
2) ) does not 

satisfy Eq.4. 
Notice that Eqs.5-9 can be obtained not only for 
the case of aij = const. or = aij(t) (i.e., functions of 
t), but also for the general case of aij = aij(x1,x2,t ) 
or for other cases where aij are arbitrarily selected 
functions. This is because the processes from Eq.2 
to Eq.4 do not include any operation of 
“differentiation” (such as d/dt), and consist 
exclusively of multiplications by a matrix F. 
  From Eqs.6-9, we finally obtain 

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 271



 

 

F =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+− 1112
22

11

1211

,/)(

,

aaa

aa

ω
.     [Eq.10] 

Notice that Eq.4 is completely satisfied by Eq.10, 
even if ω  is any real function of t and/or other 
variables such as ω = ω (t) or ω = ω ( x1(t), x2(t), t, 
….), the latter being an explicit function of x1 and 
x2. 
For special cases where a11 = 0, and where a11 = 

0, a12 = -ω, Eq.10 means 
F = t((0,a12), (-ω2/a12,0)),         [Eq.11] 

and 
F = t((0,−ω),(ω,0))  

= ω t((0,−1),(1,0)),             [Eq.11a] 
respectively. Noticing that Eq.12a gives 
   F =  t((0,−1),(1,0)), (=I, as below.),  [Eq.11b] 
if ω = 1, F in Eq.11b can be considered to be a 
further generalization of I = t((0,−1),(1,0)) 
(satisfying I2 = -E), which is often used as a 
matrix operator expression of the imaginary unit i 
( = 1− ). Accordingly, an alternative definition 
for matrix operator expression of (-1)1/2, 
  I = 
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can satisfy I2 = -E, and would be expected to have 
some useful characteristics not possessed by the 
conventional matrix operator expression given in 
Eq.11b, since Eq.11b is considered to be a special 
case of Eq.12, which is again a special case of F 
defined byEq.11.  
 
 
2. Mathematical relations of a matrix  
equation, F2x = -ω2x, to a differential  
equation, d2x/dt2 =-ω 2x (where dx/dt=Fx) 

 
 The matrix operator equation, F2x = -ω2x 

(Eq.4), is a kind of generalization of  
    D2u(t)

d

 = (d2/dt2)u(t) = -ω2u(t), 
which gives a harmonic oscillation of a scalar 
function u(t), with an angular frequency ω, where  
D is a differential operator, D = d/dt. 
  In this section, by letting x=t(x1(t),x2(t)) and F 
= (aij)2,2 be a real number vector and a real 
number matrix, we shall compare the relation 
between a harmonic oscillator-like matrix 
operator equation given by  
          F2x = - ω2x 
and a simultaneous differential equation,  
    Dx = Fx,                     [Eq.13a] 
satisfying a harmonic oscillator equation, 

    D2x 
d
=  t(D2x1,D2x2) = -ω2x.      [Eq13b] 

 

Here we consider a generalized case of Eq.4, 
where aij are either constants or functions of x1(t), 
and x2(t), and t, i.e., 

 aij = aij(x1,x2,t).                 [Eq.14] 
Then we have, 
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A simultaneous differential equation, given by 

   Dx 
d
=  t(Dx1,Dx2) 
=
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is now considered for comparison with Eqs.14a,b. 
From Eq.14a and Eq.15, we first find 
  Dx = Fx. 
  On the other hand,  
D2x = D(Dx) = D t(Dx1,Dx2) 
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                                 [Eq.16] 

= F(Dx) +
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 Since F(Dx) = F(Fx) = F2x, then  

D2x = F2x+
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    = F2x + (DF)x.               [Eq.18a] 
From Eqs.17-18, we finally have 

)/(// 1222211211 xxDaDaDaDa −== , 

or 

21122211 DaDaDaDa = ,      [Eq.19] 

as the necessary and sufficient condition for 
obtaining  

D2x = F2x.              [Eq.20] 
Under the condition of Eq.7, we find  

Da22=-Da11,          [Eq.21a] 
and therefore Eq.19 leads to 
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Da12Da21 = -(Da11)2.       [Eq.21b] 
  Accordingly, we now get the following 
theorem; 
 

[Theorem 1.]  
Let x and F be a real vector and a real 

matrix operator, respectively given by x = t(x1(t), 
x2(t)) and F=(aij)2,2, where aij = aij(x1,x2,t). If F2x 
=-ω2x, Dx = Fx, and Da12Da21 = -(Da11)2, (where 
D=d/dt), then we get a harmonic oscillator, D2x 
= -ω2x, which further gives 

D2x (=d2x/dt2) = F2x = -ω2x.    [Eq.22] 
  [Proof] From F2x = -ω2x, we find a22=-a11 and 
a21=-(a11

2+ω2), which further gives Eq.22 under 
the condition of Dx = Fx and Da12Da21= - (Da11)2, 
as described above. 

 
From Eq.21b, it is evident that 
        Da11= Da12=0             [Eq.21c] 
(which means that a11 and a12 are constants.)  is 
sufficient for obtaining Eq.22, if we have F2x =  
-ω2x and dx/dt =Fx. It is also quite evident that  
        Daij = 0, (i,j = 1,2)          [Eq.21d] 
(i.e., aij : constants) give harmonic oscillation of 
x(t) given by Eq.22, under the similar conditions. 
  In case of Lotka-Volterra system in Eqs.1-1b, 
where a12=ax1, a21= -a’x2, a11= r1-αx1-βx2, a22=-
a11, Eq.21b is written as 

(αDx1+βDx2)2= aa’Dx1Dx2,      [Eq.23] 
if Dr1 =0 (i.e., r1: constant). Eq.23 is rewritten as 
 α2(Dx1/Dx2)+β2(Dx2/Dx1)=-(aa’-2αβ), [Eq.23a] 
or as 
 {(αDx1+βDx2)/(α+β)}2/(Dx1Dx2)=aa’/(α+β)2. 
                                 [Eq.23b]  
 
 
3. Towards finding general solutions of

 F2x = -ω2x 
 
  In this section, we will attempt to get a general 
solution of the operator equation given by Eq.4. 
  Let G1 and G2 be 2 X 2 matrix operators 
defined by 
     G1 = e tF,   G2 = e- tF,         [Eq.24] 
where F is given by Eqs.2-4, satisfying Eq.11. 
Then we find, by noticing F2 = -ω2E, that  

  G1 = etF = ∑∞
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where ck = 1/k!. 
 By similar consideration on G2, we finally obtain 
G1 =etF FtEt )sin()(cos 1 ωωω −+= ,  [Eq.25.1a] 
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[Eq.25.1b] 
G2 =e-tF FtEt )sin()(cos 1 ωωω −−=   [Eq.25.2a] 
. 
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            [Eq.25.2b] 
where a22 = -a11, and a12 = -(a11

2+ω2)/a12. 
By letting Ck= t(Ck1,Ck2), where Cki , (k,i = 1,2) are 
real constants selectable arbitrarily, it is easily 
found that the two solutions (Eq.26) written 
below satisfy Eq.4 and are lineally independent 
solutions (singular solutions) of the operator 
equation Eq.4, if aij = const. or = aij(t), which are 
not explicit functions of x1 and x2; 
x(k)= t(xk1,xk2) = GkCk  

= eσ(k)tFCk 
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(k=1,2, and σ(1)=1,σ(2)=-1, a22=-a11). [Eq.26] 
Accordingly, general solution of Eq.4 is given 

by 
x = t(x1, x2) 

= A1x(1)+A2x(2)                 [Eq.27a] 
= A1e tFC1 + A2e -tFC2                     [Eq.27b] 
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where a22 = -a11, and a12 = -(a11
2+ω2)/a12,  

and further, bij are given by 
b11= A1C11+ A2C21,  b12= A1C11- A2C21,  
b21= A1C12+ A2C22,  b22= A1C12- A2C22.         

[Eq.28a] 
The four equations in Eq.28a mean that the four 
constants bij can be arbitrarily selected since the 
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four constants Cij and the two consonants A1, A2 
are arbitrarily selectable ones.  
  Eq.28 elucidates a general solution of the 
operator equation, Eq.4, if aij in Eq.28 are 
constants or functions (for example, of t ) other 
than explicit functions of x1(t) and/or x2(t). In 
those cases where some of aij are explicit 
function(s) of x1(t) and/or x2(t), Eq.28 gives a 
simultaneous equation of x1(t) and x2(t), on which 
solvability concerning x1(t) and x2(t) depends. In 
those cases where some of aij are linear 
combination(s) of x1(t) and/or x2(t), Eq.28 might 
be a solvable simultaneous equation from which 
general solutions could be deduced, as will be 
shown later in Lotka-Volterra systems. If Eq.21b 
or Eq.23 is satisfied, the general solution Eq.28 
and that of the simultaneous differential equation 
Eq.15 are identical. 
 
  Eq.28 is rewritten as 
   x1 = B11cos ωt + B12sin ωt,       [Eq.29a]  
   x2 = B21cos ωt + B22sin ωt,       [Eq.29b] 
where  

B11 =b11,  B12= (b12a11+b22a12)/ω, 
B21 =b21,  B22= (b12a21+b22a22)/ω. 

and where a22 = -a11, and a12 = -(a11
2+ω2)/a12.  

Thus we have 
 cos ωt = (B22x1 - B12x2) /(B11B22 - B12B21), 
 sin ωt = (-B21x1 + B11x2) / (B11B22 - B12B21), 
and therefore it reveals that 
  (B22x1 - B12x2) 2 + (-B21x1 + B11x2) 2 
   = (B11B22 - B12B21)2,             [Eq.30a] 
which further brings about a quadratic equation: 
 (B22

2+B21
2) x1

2 – 2(B12B22 + B21B11) x1x2 
 + (B11

2 + B12
2) x2

2 - (B11B22 - B12B21)2=0. 
                                [Eq.30b] 
 Eq.30b gives a trajectory of Eq.4 (F2x = -ω2x; ω2 
> 0) in (x1, x2)-plane, which is a conic curve, if Bij 
are constants.  
  From Theorem 1, Eq.30b generates a harmonic 
oscillation given by D2x = F2x = -ω2x (in Eq.21), 
if Dx = Fx, and (αDx1+ βDx2)2 = aa’ Dx1Dx2. 
 
4. Lotka-Volterra harmonic oscillations:

 Mathematical consideration 
  Lotka-Volterra differential equation in Eq.1 is 
comparable to the following matrix operator 
equation. 
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If the matrix operator F satisfies Eq.4, 
   F2x = -ω2x, 
then we have Eqs.7-11,and therefore it follows 

that, by letting a22 = -r’ (= 22122 x-r xβα − ), 

-r’ = -a11 = -( 21111 x-r xβα − ) ,     [Eq.4.2] 

and 
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21111 ')x-(r xxaax =+− ωβα , [Eq.4.3a] 

the latter being rewritten as a quadratic 
equation:
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[Eq.4.3b] 

where      h = aa ′−αβ .          [Eq.4.3c] 

  Eq.4.3b represents a conic curve, which is a 
trajectory of Eq.4.1 satisfying F2x = -ω2x. 

Hessian matrix of g(x1,x2) is   
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By letting 
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and 
   L = (-r1α, -r1β) ,

 Eq.4.3b is written as 

g(x1,x2) = txH0x + Lx + )( 22
1 ω−r =0, [Eq.4.3c] 

and we then have 
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222
0

aaaa
hH
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.           [Eq.4.3d]
 

 By letting κ be eigenvalue of H0, κ satisfies a 
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simultaneous equation;  
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and an eigenequation is 

  | H0-κE | = 0))(( 222 =−−− hκβκα , 

i.e., 

  0)()( 222222 =−++− hβακβακ . 

                    [Eq.4.5] 
Thus eigenvalues (κ ) of H0 are given below;  
   κi = {α2+β2 +σi Do

1/2}/2, ( i = 1,2), [Eq.4.6] 
where  

Do= (α2 - β2) 2 + 4h2,       [Eq.4.6a] 

and    ( 1σ , 2σ ) = (1,-1).         [Eq.4.6b] 

 Eigenvectors vi (= t(vi1, vi2) ) of H0, satisfying  
        vi1

2+ vi2
2= 1,             [Eq.4.7] 

and corresponding to κ i (i=1,2) are therefore 
found as  

  vi =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

i

ii

t
th

        
}/){( 22βκ ,           [Eq.4.8]

 

where  
    ti = (κi D0

1/2/ h2)-1/2,  
(i=1,2), (κi > 0 ),          [Eq.4.9] 

which can be obtained as below; 
 ti = {(κi - β2)2 /h2 + 1}-1/2 
   = {(α2-β2+σiD0

1/2)2/(4h2) + 1}-1/2 
   = [(α2-β2+σiD0

1/2)2+4h2}/(4h2) ]-1/2 
   = [{(α2-β2)2+ 4h2}+D0+2σi(α2-β2) D0

1/2}  
/(4h2) ]-1/2 

   = [D0+ D0+2σi(α2-β2) D0
1/2} /(4h2) ]-1/2 

    = [{(α2-β2 + σiD0
1/2)/2}D0

1/2/h2]-1/2 

     = (κi D0
1/2/ h2)-1/2, (i=1,2).  

Thus we find an orthogonal matrix, P, for 
diagonalizing H0, as below: 

  P = (pij) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2212

2111

,
,
vv
vv

.         [Eq.4.10] 

Letting X = t(X1,X2), P satisfies 
x= PX.                    [Eq.4.11] 

Thus we have 
  x1 = p11X1 + p12X2 

       = v11X1 + v21X2 

  x2 = p21X1 + p22X2 
       = v12X1 + v22X2 

Since P-1 = tP, it follows that  
X = P-1x = tPx                [Eq.4.12] 
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.         [Eq.4.12a] 

Accordingly, for i = 1, 2, we have 

Xi = 2211 xvxv ii +               [Eq.4.13] 

= 21
2 }/){( xtxth iii +− βκ        [Eq.4.13a] 

= itxxhD ])}2/()[{( 2101
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σβα ++−±=  

                             [Eq.4.13b] 
Furthermore, we find 

  LPX = (-r1α, -r1β) ⎟⎟
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      = -r1{ (α v11 + β v12)x1 +(α v21 + β v22)x2 } 
                              [Eq.4.14] 
By letting K = t((κ1,0),(0, κ2)), now we have 
  tXKX+LPX+(r1

2 – ω2) = 0,     [Eq.4.15] 
meaning that 
  κ1X1

2 + κ2X2
2  

 - r1 { (α v11 + β v21)x1 +(α v12 + β v22)x2 }+ (r1
2 

+ω2 ) = 0.                   [Eq.4.15a] 
Based on the above analyses, this equation is 
rewritten by 
  (X1 - X10)2/(C/κ1) + (X2 - X20)2/(C/κ2) =1 
                              [Eq.4.16] 
where 
   X10 = r1(α v11 + β v21)/(2κ1), 
   X20 = r1(α v12 + β v22)/(2κ2), 
   C = (r1

2/4){( α v11 + β v21)2/κ1  
+ ( α v12 + β v22)2/κ2 } – (r1

2 +ω2 ). 
Since κ1κ2 > 0, if ω does not depends neither on t 
nor on xi, this equation (Eq.4.16) represents an 
ellipse with semi-axis’ lengths, (C/κ1)1/2 and 
(C/κ2)1/2, when C > 0, and a hyperbola when C < 
0 . These conic curves are trajectories represented 
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by (X1,X2) which are obtained by the orthogonal 
transformation, Eq.4.12a, from the trajectories 
represented by Eq.4.3b. Thus both Eq.4.3b and 
Eq.4.16 represents the same conic curve being a 
trajectory of Eq.4.1 satisfying F2x = -ω2x. If C > 
0, this conic curve trajectory is an ellipse, 
meaning that F2x = -ω2x represents a harmonic 
oscillation. If C < 0, on the other hand, the 
corresponding trajectory is a hyperbola, meaning 
that harmonic oscillation does not occur..  
  In more general cases where C (> 0) depends 
on t ( i.e., C= C(t) ), the long and short diameters 
of the ellipse varies depending on t, confirming 
that X1 and X2 ( and therefore, x1 and x2) give a 
generalized harmonic oscillation. 
 
 
5. Harmonic oscillations in  

Schrödinger equation 

 
 This section describes something about the 
harmonic oscillation in Schrödinger equation, 
from a viewpoint of the above-mentioned matrix 
operator equation.  
 Schrödinger equation is given by 

ψψψ )(/)}2/({/ 222 xVxmti +∂∂−=∂∂− hh    
                                 [Eq.6.1] 
As is well-known, by letting  

ψ(x,t) = u(x)f(t), 
ψ(x,t) can be separated to a t-dependent portion 
f(t) and an x-dependent portion u(x), satisfying 

dt
tdf

tf
i )(

)(
h  

ExuxV
dx

xud
mxu

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= )()()(

2)(
1

2

22h     [Eq.6.2] 

where E is a constant. It therefore follows that 

  )()( tEf
dt

tdfi =h .                 [Eq.6.3] 

Eq.6.3 is rewritten as 
  )()()/()( tfitfEitDf ω−=−= h    [Eq.6.4a] 
in which D=d/dt and ω =E/h , and further written 
as;   
    0)()( =+ tfiD ω .           [Eq.6.4b] 
By using another operator, )( ωiD + , we have 
    ,0)())(( =+− tfiDiD ωω    [Eq.6.5a] 
meaning that 
     ,0)()( 22 =+ tfD ω         [Eq.6.5b] 
or,    

      )(/)( 222 tfdttfd ω−= .   [Eq.6.5c] 
From Theorem 1 and Eq.21b (in Section 2), if 

we use F = (aij) hitherto discussed and f0(t) = 
t(f1(t), f2(t)), Eq.6.5c means that, under the 
condition of (da12/dt)(da21/dt)=-(da11/dt)2 (Eq.21b), 
(e.g., aij are constants), we have  
 D f0(t)  = F f0(t),                [Eq.6.7a] 
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tf .             [Eq.6.7b] 

Thus Eqs.6.7a/b elucidates that  
     )(/)( 1

22
1

2 tfdttfd ω−= ,      [Eq.6.8a] 

     )(/)( 2
22

2
2 tfdttfd ω−= .      [Eq.6.8b] 

  Experimental data satisfying Eq.6.4a have 
hitherto been accumulated during the long history 
of quantum mechanics, which suggests Eqs. 
6.5a/b, whose solutions are f1(t) and f2(t) in 
Eqs.6.8a/b.  f1(t) is considered to be related to 
the probability of the existence of quantum 
element, whereas f2(t) does not seem to have been 
directly analyzed. Theoretical analyses mentioned 
above in this paper seem to suggest that we may 
need to find what f2(t) could really be. Could f2(t) 
be related to some unknown matter or element or 
some unknown phenomenon other than those we 
presently know ? The relationship between F and 
the so-called “spin matrix” or something like 
might have some essence for answering this 
question.  
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