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Abstract: A 2x2 matrix operator F=(a;), satisfying a harmonic oscillation-type operator equation, F2x=-a’X,
(Where x="(xy(t), X»(t)), was obtained by letting ax= -ay; and a,a, = -(&’+ayu?). For aj; = const. or = a;; (), and for
some cases of a;; = ajj(X1, X2, t), general solutions of F2x= -w’x were obtained, discussed, and applied to some cases.
Mathematical relationship between Fx = -ax and d*x/dt? = -@’x, where dx/dt = Fx, was also analyzed. An
application was made to Lotka-Voltera dynamic system, where ay; = ry-ax;-fXp, @1p= -aX1, 821 = @’Xp1, 822 = -843.
Finally, this type of Lotka-Volterra operator equation was found to have a trajectory given by an ellipse (for C >
0), (X1~ Xi0) 2(Cla) + (Xo- Xa0)2/(Clx) =1, where X, =H{(& = 8 +614Dy) /(20 + .1/ /4Dy /1), (i=1,2), in which

(O'],O'z): (1,-1), h= aﬂ— aa’, D():(az+ﬂ2)2+ 4h2, K :(a2+ﬁ2+D01/2)/2, C= (r12/4){(aV11 +ﬂV21)2/K1 + (a V12+ﬂV22)2/K'2}

- (r® + &) . Schroedinger equation was also discussed from this aspect of generalized harmonic oscillation.
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1. Introduction

Lotka-Volterra differential equation system has
long been analyzed from various aspects in many
different and interdisciplinary scientific fields
(Reijenge, 2002; Hofbauer & Sigmund, 1998). A
well-known typical differential equation system
of Lotka-Volterra type is given by

(d/dt)xz(dxl/dtj:(xl_axlxz J

constants (in simpler cases) or functions of xy(t),

Xo(t), and/or t (i.e., aj=aj(Xy,Xz,t), in more general

cases). Eq.4 means that —@° (< 0) is an

eigenvalue or eigenfunction of Q.

From Egs.2-4, eigenequation of Q is given by
9(x) = 9(-@°)

(an2 +a,ay,)+ o’ ap, (a;, +ay)

2
aZl (all + a22)‘ (aZZ + a12a21) + wz

dx,/dt) axx —rx, = (ap+axn)’e’ + {o - (anay, - a12821)} >
[Eq.1] =0, [Eq.5]
where x = (x4, X,), and where x (=-¢°) is an eigenvalue of Q (= F?).
r=ri— Xy — BiXo, [Eq.1b] Accordingly, the necessary and sufficient
=1 — aXy — BoXo.. [Eg.1c] condition for the existence of non-zero solution x

In Egs.1-1b, x; and X, denote the number of
individuals of preys and predators, respectively,

of the operator equation, Eq.4, is given by Eq.5.
Since & > 0, we find, from Eq.5 and Eq.6, that

and, rand —r’ denote the rate of the increase in the an +ay; =0, [Eq.6]
number of prey and predator individuals, and
respectively, both of which depend on t. For i =1 @ - (ndy - aay) = 0. [Eq.7]
and 2, r,a,a’, «;, 3, are constants. Eqs.62-7 brin% about

In order to analyze this system in relation to @ + (an” + aydz) = 0. [Eq.8]
harmonic oscillation system, let us consider a2 x Ve easily find
2 real matrix operator F, given by a, #0,a, #0, [Eq.9]

d because Q = F* = '( (au?0), (0,a°) ) does not
F=(a;),, ='( (an,212), (321,822) ) satisfy Eq.4.

Notice that Eqgs.5-9 can be obtained not only for

a [Eq.2] th = _ . .
_| GG e case of a;;= const. or = a;j(t) (i.e., functions of
[au,azj t), but also for the general case of a; = a;j(Xy,X2,t )
and or for other cases where a;; are arbitrarily selected
Q = (Gi)22=F, [Eq.3] functions. This is because the processes from Eq.2
satisfying to Eg4 do not include any operation of
Qx = FX = -a’X, (0% > 0) [Eq.4] “differentiation” (such as d/dt), and consist

in which x denotes a real vector, x= (xy(t),Xx(t)),
where ' denotes transpose, and a;; are either
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exclusively of multiplications by a matrix F.
From Eqs.6-9, we finally obtain
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= :[ Ay, a; ]
2 2
-(a, +o)/a,, —a,

Notice that Eq.4 is completely satisfied by Eq.10,
even if w is any real function of t and/or other
variables such as @ = @ (t) or @ = @ ( X1(t), X2(t), t,
....), the latter being an explicit function of x; and
Xo.

For special cases where a;; = 0, and where ay; =
0, a;; = -, Eq.10 means

[Eq.10]

F = t((OialZ)l (-w2/a1210))l [qul]
and
F= t((O,—a)),(a),O))
= a)t((O,—]),(l,O)), [qula]
respectively. Noticing that Eq.12a gives
F = '(0,-1),(1,0)), (=1, as below.), [Eq.11b]

if =1, F in Eq.11b can be considered to be a
further generalization of | = '((0,-/),(1,0))

(satisfying 1> = -E), which is often used as a
matrix operator expression of the imaginary unit i

( =+J/-1). Accordingly, an alternative definition

for matrix operator expression of (-1)*?,

| = [ ay, ay,
- (anz +h/a,, —ay , [Eq.12]
can satisfy 1> = -E, and would be expected to have

some useful characteristics not possessed by the
conventional matrix operator expression given in
Eq.11b, since Eqg.11b is considered to be a special
case of Eq.12, which is again a special case of F
defined byEq.11.

2. Mathematical relations of a matrix
equation, F = -&x, to a differential
equation, d’x/dt* =-@ *x (where dx/dt=Fx)

The matrix operator equation, F2x -a’X

(Eq.4), is a kind of generalization of
D2u(t)= (ddB)u(t) = -cRu(t),

which gives a harmonic oscillation of a scalar
function u(t), with an angular frequency @, where
D is a differential operator, D = d/dt.

In this section, by letting x="(x,(t),x»(t)) and F
= (@j)22 be a real number vector and a real
number matrix, we shall compare the relation

between a harmonic oscillator-like matrix
operator equation given by
FX = - o
and a simultaneous differential equation,
Dx = F¥, [Eq.13a]

satisfying a harmonic oscillator equation,

d
D = Y(D%*;,D%) = -a’. [Eq13Db]
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Here we consider a generalized case of Eq.4,
where a;; are either constants or functions of x,(t),
and x,(t), and t, i.e.,
a;j= aij(Xl,Xz,t).
Then we have,
Fx= [allxl +apX, J ,
alel + a22X2
F’= [(3112 +83,8,) X + 8, (8, +8) X, } . [Eq.14b]
8 (@ + )X + (8" + 8251,

[Eq.14]

[Eq.14a]

A simultaneous differential equation, given by
d
Dx = '(Dxy,Dxy)
:(allxl + a12 XZ J y
alel + a22 X2
is now considered for comparison with Eqgs.14a,b.
From Eqg.14a and Eq.15, we first find
Dx = Fx.
On the other hand,
D% = D(Dx) = D ‘(Dxy,Dx,)

— D(allxl +tapX, J
8% +8,X,

:((allDXl +a12 DXZ) +((Da11)xl +(Da12)x2) J

[Eq.15]

(@,,Dx, +a,,Dx,) +((Da,, ) x, +(Day,)x,)

= (all’ alZ }[ DXl J+((Dall)xl + (DalZ )XZ j .
aZl’ a22 DXZ (Dazl)xl + (DaZZ )X2
[Eq.16]
= F(Dx) +((Da11)x1 +(Day,)X, j
(Day,)x, +(Day,)x,
Since F(Dx) = F(Fx) = F?x, then
D2x = F2x+ ((Dall)xl +(Day,)x, j [Eq.17]
(DaZl)Xl + (DaZZ)XZ
= F2x+[Daﬂ’ Da, ]{&J [Eq.18]
Da,;, Day, \ X,
= FX + (DF)x. [Eg.18a]

From Eqgs.17-18, we finally have
Da,, / Da,, = Da,, / Da,,(=—X, / X;)
Da,,Da,, = Da,,Da,,, [Eq.19]

as the necessary and sufficient condition for
obtaining

D* = F. [Eq.20]
Under the condition of Eq.7, we find
Dag,=-Day, [Eq.21a]

and therefore Eq.19 leads to
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Daj,Day; = '(Dan)z-
Accordingly,
theorem;

[Eg.21b]
we now get the following

[Theorem 1.]

Let x and F be a real vector and a real
matrix operator, respectively given by x =(x(t),
Xy(t)) and F=(a;)22, where ajj = ajj(Xy,Xa,t). If F°x
=-@fx, Dx = Fx, and Da;,Da,; = -(Day)? (where
D=d/dt), then we get a harmonic oscillator, D?x
= -@’x, which further gives

D (=d*x/dt?) = Fx = -ax.  [EQ.22]
[Proof] From F? = -&?x, we find ax,=-a; and
an=-(an’+a?), which further gives Eq.22 under
the condition of Dx = Fx and Da;,Day= - (Day,)?,
as described above.

From Eq.21b, it is evident that
Dan: Da]_z:O [Eq21C]
(which means that a;; and aj, are constants.) is
sufficient for obtaining Eq.22, if we have F’x =
-w’x and dx/dt =Fx. It is also quite evident that
Da; =0, (i,j=1,2) [Eg.21d]
(i.e., a; : constants) give harmonic oscillation of
X(t) given by Eq.22, under the similar conditions.
In case of Lotka-\Volterra system in Egs.1-1b,
where app=axy, a,n= -a’Xy, ap= rl'axl'@(z, adp=-
ay, Eq.21b is written as
(aDx;+ DX;)*= aa’Dx;Dx,, [Eq.23]
if Dry =0 (i.e., ry: constant). Eq.23 is rewritten as
o?(Dx1/Dx,)+F(Dx,/Dx,)=-(aa’-2af), [Eq.23a]
or as
{(aDxy+Dx,)/(a+ B)Y/(Dx,Dxo)=aa’/(a+f)°.
[Eqg.23b]

3. Towards finding general solutions of
Fx = -afx

In this section, we will attempt to get a general
solution of the operator equation given by Eq.4.
Let G; and G, be 2 X 2 matrix operators
defined by
G =e", G,=e¢, [Eq.24]
where F is given by Egs.2-4, satisfying Eq.11.
Then we find, by noticing F? = -°E, that

G =ef= Zf:ock (tF)"
= Zi:O{CZm (tF)zm + C2m+1 (tF) 2m+1}
=3 Lont™ (F?)™ +Cpp ™™ (F?)"F}

= Z:ZO{CthZm (_a)z E) " + C2m+1t zmed (—(02 E) " F}
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=D o Con (@) (-D"}E

+ w_l{z:=0 Comn (C()t) amd (_1) m}F

= (cos wt)E + (0" sin wt)F ,
where ¢, = 1/k!.

By similar consideration on G,, we finally obtain
G1 =e" = (coswt)E + (0 sinwt)F, [EQ.25.1a]
_[cosat+a,0”sinat, a0 sinot

cos wt +a,,m " sin wt

[Eq.25.1b]
[Eq.25.2a]

a, o sin at,
G, =" = (cos wt)E — (@' sin wt)F

[cos at—a ot sinat, -a,wsinat

coswt —a,,w " sin a)tJ
[Eq.25.2b]
where a, = -ay;, and ay, = -(au’+a)/ag,.
By letting C,= '(C1,Ci2), Where C; (k,i = 1,2) are
real constants selectable arbitrarily, it is easily
found that the two solutions (Eq.26) written
below satisfy Eq.4 and are lineally independent
solutions (singular solutions) of the operator
equation Eq.4, if a;= const. or = a(t), which are
not explicit functions of x; and x,;
X(K)= ‘(X Xi2) = GCi
— ea(k)tFCk
—(C,,cosat +(Ca,; +C,y,a,)@ sinat ,
Cy, COsat +(Ca,, +C,,a,,) 0 sinwt
(k=1,2, and o(1)=1,0(2)=-1, a,=-a11). [EQ.26]
Accordingly, general solution of Eq.4 is given
by

-a, 0" sin a,

X= t(Xll X2)
= Ax(1)+Ax(2) [Eqg.27a]
=Ase tFCl + Ae -tFCZ [Eq27b]

= A, [ Cucosat +(Cpay, + Cpa,)o sinot
C,,Cosat + (Cya,, +Ca,,)w " sinat

+ A, {Cﬂ cosat +(Cyay, +C,,a,) @ sinat ]
C,, Cosat + (Cpa,, +C,ay, )0 sinat
[Eq.27c]
=[bucoswt+(buau+bzzau)w1sina>tJ , [Eq.28]
b,, cosat + (b,,a,, +b,,a,,) o " sin ot
where a, = -ay;, and ay, = -(au’+o)la,,
and further, bj are given by
b= A1Cii+ ACo,  D1o= A1Cys- ACoy,
b21= A1Cio+ ACo, D= A1C1p- ACoo.
[Eq.28a]
The four equations in Eq.28a mean that the four
constants bj; can be arbitrarily selected since the
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four constants Cj; and the two consonants A;, A,
are arbitrarily selectable ones.

Eq.28 elucidates a general solution of the
operator equation, Eq.4, if &; in Eq.28 are
constants or functions (for example, of t) other
than explicit functions of x;(t) and/or x,(t). In
those cases where some of a;; are explicit
function(s) of x;(t) and/or x,(t), Eq.28 gives a
simultaneous equation of x,(t) and x,(t), on which
solvability concerning x(t) and x,(t) depends. In
those cases where some of aj;are linear
combination(s) of x,(t) and/or x,(t), Eq.28 might
be a solvable simultaneous equation from which
general solutions could be deduced, as will be
shown later in Lotka-Volterra systems. If Eq.21b
or Eq.23 is satisfied, the general solution Eq.28
and that of the simultaneous differential equation
Eq.15 are identical.

EQ.28 is rewritten as
X1 = B11€0S @t + Byysin o,
X2 = B,1€0S at + Baysin wt,
where
By =byu, Bi= (bran+bya)/
Bo1 =ba1, Boo= (D122 +02az)/ o.
and where a,, = -ay, and ay, = -(ap’+o’)/ay,.
Thus we have
oS @t = (BzoXy - B1oX;) /(B1iBaz - B12B21),
sin ot = (-ByX1 + BuXp) / (BuaBy2 - B12Ba1),
and therefore it reveals that
(BaoXe - BioXo) 2 + (-BoiXq + BuXy) ®
= (BuB2 - B12Ba1)?, [Eq.30a]
which further brings about a quadratic equation:
(Bzzz+3212) X - 2(B12B22 + Bx1Bu) X%,
+ (Bu” + B1p") X,” - (BuB2 - B12B21)’=0.
[Eq.30Db]
Eq.30b gives a trajectory of Eq.4 (F = -&’X; &
> 0) in (X1, X2)-plane, which is a conic curve, if B
are constants.
From Theorem 1, Eq.30b generates a harmonic
oscillation given by D°x = F? = -« (in Eq.21),
if Dx = Fx, and (aDx;+ fIDX,)> = aa’ Dx;Dx,.

[Eq.292]
[Eqg.29b]

4. Lotka-Volterra harmonic oscillations:
Mathematical consideration
Lotka-Volterra differential equation in Eq.1 is
comparable to the following matrix operator
equation.
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Fx= (anl a, j(xl j
Qg1 85 N\ X,

[rl - = B, j()ﬁ]
ax, —(h-aX, —BX) \ %

2

= ((rl S0 Xy _ﬁlx2)xl —ax; X, -j_ [Eq_4.]_]
a'x; X, = (1, -, Xy = X, )X

If the matrix operator F satisfies Eq.4,
F’x = -aX,
then we have Eqgs.7-11,and therefore it follows

that, by letting ax = -’ (= r, - a,x, — 3,X, ),

-r'=-ay =-(r-aX, - X)), [Eq.4.2]

and
(r, - X, — BiX,)? + w* =aa' x,X,, [Eq.4.3a]
the latter being rewritten as a quadratic

equation:

9(x, X,) = a?x,” + 2hx, X, + B2X,”

—2r, (X, + Bi%,) +(r, —w?) =0 |

[Eq.4.3b]
[Eq.4.3c]

where h=qf-aa'.

Eq.4.3b represents a conic curve, which is a
trajectory of Eq.4.1 satisfying F?x = -&’x.
Hessian matrix of g(x;,x,) is

a’, h, -neo
A= B -nB

—na, -np, -0’ [Eq.4.4]
By letting
Hoz(az, hJ:( a?, aﬂ—aa’}

h, p°) \ap-aa, p°
and

L=(-na rp),

Eq.4.3b is written as
g(X1,X2) = XHoX + Lx + (rl2 — %) =0, [Eq.4.3c]
and we then have
Hy|=a?B%-h?
=-aa'(2afi-aa’) [Eq.4.3d]

By letting x be eigenvalue of Hy, « satisfies a
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simultaneous equation;
2
(HexE)x = [ (@ —K)X +hx, :[Oj, [Eq.4.4]
hx, +(B° —x)x, ) \0
and an eigenequation is
| Ho-%E | =(a® - x)(B* -x)-h* =0,
ie.,
K*—(a? + )k + (a*B* -h?) =0.
[Eq.4.5]
Thus eigenvalues (x) of Hy are given below;
K= {d+F+aD,"4/2, (i =1,2), [Eq.4.6]

where

Do= (- )%+ 4h?,
(o1,0,)=(1-1).

[Eq.4.6a]
and [Eq.4.6b]

Eigenvectors v; (= '(Vig, Viz) ) of Ho, satisfying

Vit + Vi’ = 1, [Eq.4.7]
and corresponding to «;(i=1,2) are therefore
found as

Vi={(x -p)/ 0} [Eq.4.8]
tI
where
ti = (KI DOl/Z/ h2)-l/2,
(i=1,2), (>0), [Eq.4.9]

which can be obtained as below;
t={(xi- F) Ih*+ 1}

= {(o-f*+aiDg *)1(4n%) + 131

= [(o2-F+aiDo ") +4n7}(4h%)

= [{(e-p)*+ 4h*}+Do+20(o’-3) D'}
/(4h2) ]—1/2
[Do+ Do+20i(r-3) Do} 1(4h°) 1
[{(az-ﬁva O_iD01/2)/2}D01/2/h2]-1/2

= (1 D" W) Y2, (i=1,2).
Thus we find an orthogonal matrix, P, for
diagonalizing Hy, as below:

V117V21
VlZ ’ V22
Letting X = '(X1,Xy), P satisfies
x= PX. [Eq.4.11]

Thus we have
X1 = PuXi+ PraXe
=VuXy + VuX;
X2 = ParXy + P2Xz
= V12X + VX

©ISAROB 2009
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Since P! =P, it follows that

X =Px="Px [Eq.4.12]
:(Vll ! V12 J(Xl j
V21’V22 X2
V,, X, +V, X
= ( noL e j . [Eq.4.124]
V21X1 + V22 X2
Accordingly, fori =1, 2, we have
Xi =Vi X, + Vi, X, [Eq.4.13]
={(x, - B*) I}, x +1,X, [Eq.4.133]

={(e*-p* + al\/ﬁc) 1(2h)}x, + x,1t,

=2[{(a® - f* +0,/Dy) [(2N)}x, +X,]

1xy[Dy Ih?).

Furthermore, we find

Vi, Vor ) (X
LPX = (-, -rl,b’)( " 21}( lj
V12‘V22 X2

VigXg + Vi X, j

[Eq.4.130]

V12 Xl + V22 X2

= (-rla, -rlﬁ)(

= -ryg@Vu + fV12)X1 H@ Va1 + BVar)Xay
[Eq.4.14]
By letting K = ((x1,0),(0, x3)), now we have
XKX+LPX+(r? — o) = 0, [Eq.4.15]
meaning that
K‘1X12 + K2X22
-1 { (aVu + BVar)Xy H(aVip + BVz)Xe 1+ (1
+a&?)=0. [Eq.4.158]
Based on the above analyses, this equation is
rewritten by
(X1- X10)°/(Cl1r) + (X2 - X20)*/(Cl ) =1
[Eq.4.16]
where
X10= ri(avu + BVa)l(2K1),
Xa0= r(aViz + BV2)(212),
C = (r218){( avy + BVa)lxy
+(avp+ ﬂVzg)Z/KZ }—(r +a).
Since k1 > 0, if wdoes not depends neither on t
nor on x;, this equation (Eqg.4.16) represents an
ellipse with semi-axis’ lengths, (C/«,)" and
(Clx,)™ when C > 0, and a hyperbola when C <
0 . These conic curves are trajectories represented
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by (X1,X;) which are obtained by the orthogonal
transformation, Eq.4.12a, from the trajectories
represented by Eq.4.3b. Thus both Eq.4.3b and
Eq.4.16 represents the same conic curve being a
trajectory of Eq.4.1 satisfying F>x = -&x. If C >
0, this conic curve trajectory is an ellipse,
meaning that F?x = -&’X represents a harmonic
oscillation. If C < 0, on the other hand, the
corresponding trajectory is a hyperbola, meaning
that harmonic oscillation does not occur..

In more general cases where C (> 0) depends
ont (i.e., C=C(t)), the long and short diameters
of the ellipse varies depending on t, confirming
that X; and X, ( and therefore, x; and x,) give a
generalized harmonic oscillation.

5. Harmonic oscillations in

Schrsdinger equation

This section describes something about the
harmonic oscillation in Schradinger equation,
from a viewpoint of the above-mentioned matrix
operator equation.

Schrsdinger equation is given by
—inoy 1ot =—{n? 1(2m) Y% 1 X% +V (X)y

[Eq.6.1]
As is well-known, by letting
y(xt) = u(x)f(Y),

w(x,t) can be separated to a t-dependent portion

f(t) and an x-dependent portion u(x), satisfying

in di(t)
f(t) dt
2 2

:1(_hd U(ZX) +V(X)U(X)J= E [Eq.6.2]
u(x){ 2m dx

where E is a constant. It therefore follows that
ih% =Ef(t). [Eq.6.3]

Eq.6.3 is rewritten as
Df (t) =—i(E/h) f () =-iaf (1) [Eq.6.44]

in which D=d/dt and @ =E/ 7 , and further written
as;

(D+iw)f(t)=0. [Eq.6.4b]
By using another operator, (D + i) , we have

(D—-iw)(D+iw)f(t)=0, [Eq.6.5a]
meaning that
(D* + @) f(t) =0, [Eq.6.5b]
or,
©ISAROB 2009
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d?f(t)/dt? =—w’f(t)  [Eq.65]

From Theorem 1 and Eq.21b (in Section 2), if
we use F = (a;) hitherto discussed and fo(t) =
(fu(t), fa(t)), EQ.6.5c means that, under the
condition of (day./dt)(da,/dt)=-(day/dt)* (Eq.21b),
(e.g., & are constants), we have

Dfyt) = F fot), [Ea.6.74]
) Ay, a, i
Fo(t) = 2 4 w2 [fl(t)]
_u o —a;; f, (1)
= -’ [fl(t)) [Eq.6.7b]
fo(t)
Thus Eqgs.6.7a/b elucidates that
d*f,(0)/dt* =’ f,(t) [Eq.6.84]
d?f,(t)/dt* =—0’ f,(t) [Eq.6.8b]

Experimental data satisfying Eqg.6.4a have
hitherto been accumulated during the long history
of quantum mechanics, which suggests Egs.
6.5a/b, whose solutions are fi(t) and fy(t) in
Egs.6.8a/b. fi(t) is considered to be related to
the probability of the existence of quantum
element, whereas f,(t) does not seem to have been
directly analyzed. Theoretical analyses mentioned
above in this paper seem to suggest that we may
need to find what f,(t) could really be. Could fy(t)
be related to some unknown matter or element or
some unknown phenomenon other than those we
presently know ? The relationship between F and
the so-called “spin matrix” or something like
might have some essence for answering this
question.
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