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A globally coupled map lattice (GCML) is an extension of a spin glass model. It consists of a
large number of maps with a high nonlinearity and evolves iteratively under averaging interaction via
their mean field. It exhibits various interesting phases under the conflict between randomness and
coherence. We have found that even in its weak coupling regime, effects of the periodic windows of
element maps dominate the dynamics of the system, and the system forms periodic cluster attractors.
This may give a clue to the efficient pattern recognition by the brain. We analyze how the effect
systematically depends on the distance from the periodic windows in the parameter space.
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I. INTRODUCTION

GCML devised by Kaneko [1, 2] is an unfailing source
of ideas on the behavior of a complex system composed
of many chaotic elements. In its simplest form, it is a
model of coupled N logistic maps fa(x) = 1 − ax2 and
evolves in an iteration of a process described by

xi(n + 1) = (1 − ε)fa(xi(n)) +
ε

N

N
∑

i=1

f(xi(n)) (1)

in discrete time n. The nonlinearity of the map f , con-
trolled by a, generally magnifies the variance among
the maps, while the averaging interaction, controlled
by ε, focuses the maps to the mean field h(n) =
∑N

i=1 f(xi(n))/N and introduce coherence into the maps.
Under the conflict between the opposite tendencies the
maps exhibit various interesting phases on the a, ε pa-
rameter plane [1]. In 90’s and early 00’s there was im-
portant progress concerning the weak coupling regime of
the model. Firstly hidden coherence and collective chaos
were found [1, 3, 4] in the desynchronized state. Even
if the coupling is set to be very weak, maps are not in-
dependent random numbers, and consequently the law
of large numbers may be violated; there is a long time
scale motion which couples the step by step evolution of
the maps in a bootstrap. Then, it was found that, even
if the coupling is set very weak, the maps systematically
synchronize and form various cluster attractors [5, 6] pro-
vided that certain tuning condition between the a and ε is
satisfied. These were called as periodicity manifestations
(PM’s) in the turbulent regime and their stability were
verified analytically [6]. The most remarkable PM’s are
the maximally symmetric cluster attractors (MSCA’s).
Let us denote by p and c the periodicity of the cluster
attractor and the number of clusters in the attractor re-
spectively. A period (p, c = p) MSCA is induced by the
period p window of the fa(x) and consists of c = p clus-
ters of maps with almost equal population each other,

which oscillate in period p around the mean field with
phases (exp(2πj/p), j = 0, 1, · · · , p − 1). Such a MSCA
is in general associated by a sequence of cluster attrac-
tors; (p, c = p − 1) → (p, c = p − 2) → · · · , which are
produced in order with the increase of the coupling ε. A
basic tool to detect the GCML state is the mean square
deviation of the mean field h(n) in time defined by

MSD ≡ 1
T

n1+T
∑

n1

(h(n) − h)2, (2)

where n1 denotes appropriate truncation, and h is an
average of h(n) during n1 to n1 + T . At MSCA, the
symmetry of the population between clusters is high and
accordingly the MSD of the mean field h(n) in evolution
is very small. On the other hand, the MSD becomes
very high due to the lack of one or more clusters in the
case of p, c < p cluster attractors. The coexistence of
various PM’s were reported in AROB [7]. Universality
in the formation of such PM’s in various coupled maps
was clarified in [8].

In this article we present new observations on the for-
mation of PM’s in a resurgence of synchronization study
of GCML.

To begin with, let us recapitulate how the windows of
element maps control the dynamics of GCML. There is
a curve of equivalent (a, ε) points [6]. That is, if a is
increased and ε is accordingly increased, GCML should
exhibit (qualitatively) the same behavior as before, es-
sentially because the PM’s are realized on the balance
of randomness and coherence. Then, such curves make
altogether a one-parameter family of curves on the (a, ε)
plane as depicted in Fig. 1 . To derive these curves let
us consider one of the MSCA’s with period p. In MSCA
the mean field is kept constant (say h∗) for its stability;
then all maps obey the same time-independent map

xi(n+1) = (1− ε)(1−ax2
i (n))+ εh∗, i = 1, · · · , N. (3)

This can be transformed by a scale transformation [9]

yi(n) =
1

1 − ε + εh∗xi(n) (4)
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FIG. 1: Foliation of windows p = 7, 5, 7, 3, 5, 4 (shadowed
bands). A, B, C, D indicate respectively the intermittency
starting, the opening, the 1st bifurvation (in a window), and
the closing point of p = 3 window. Pannels show MSD curves
at constant r. (N = 106). Bottom (MSD=10¡7) is aligned
with fixed r curve (fitted by a line). Window’s effects (PM’s)
diminish with decreasing r.

into a canonical form

yi(n + 1) = 1 − b y2
i (n), i = 1, · · · , N. (5)

Here we find that the nonlinearity of the map is reduced
by a factor

r ≡ b

a
= (1 − ε)(1 − ε + εh∗) ≈ 1 − 2ε, (6)

and the value of b = ra must be within the range of
the period p window of the map (5); xi’s in the MSCA
oscillate in period p, so yi’s must also oscillate in period
p. Now, let’s denote by y∗(b) the long time average of
the map (5). Then, from (4), it follows that

y∗(b) =
1

1 − ε + εh∗h∗. (7)

Eliminating h∗ from (6) and (7), we obtain

a = b/r (8)

ε = 1 − ry∗(b)
2

−

√

r (1 − y∗(b)) +
(

ry∗(b)
2

)2

This determines on the (a, ε) plane a one-parameter (b)
family of curves along which the period p MSCA may be
formed. These are curves of foliation of periodic windows
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FIG. 2: The MSD of the mean field for GCML at r = 0.98
(upper) and the maximum Lyapunov number λLy of a sin-
gle logistic map (lower), both as functions of b. The cor-
respondence between the dominant periodic windows and
their MSD valley-peak structures induced by the MSCA and
c = p ¡ 1, p ¡ 2, ¢ ¢ ¢ clusters is clearly seen.

[6]. In Fig. 1 we observe that near r = 1 the MSD curves
sensibly reflect the window dynamics of the element maps
of GCML and with the decrease of r from one (the larger
reduction of non-linearity from a to b), the valley-peak
structure of MSD curve diminishes. Accordingly, an ex-
tensive study reveals that cluster attractors are formed
roughly for r ≥ rth and there occur only remnants for
r < rth with rth ≈ 0.95. (We note that the synchro-
nization in the predominant p3 window continues to the
lower r compared with the other narrower windows. )

In Fig. 2 we compare the MSD curve (sampled at r =
0.98) of the GCML with the maximum Lyapunov number
λmax of the element map. We find that the MSD curve of
the mean field h(n) of GCML is a sensitive mirror of the
window dynamics of element maps. In [6] it is pointed
out that the MSD curve as a function of ε at fixed a
have many valleys and peaks at the smaller ε than for p3
foliation, while only few at the larger ε. This anomaly is
conjectured as the effect of the difference in the reduction
factor r. Present Figures 1 and 2 verify beautifully this
conjecture. Below we present our new observations in
order.

II. FREE GAS LIMIT AND ADVENT OF
CLUSTERS

In Fig. 3 we show how the predominant period three
PM’s appear in GCML with the decrease of r from one
(the increase of ε from zero). The system size is taken as
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FIG. 3: Variation of the MSD curves with the decrease of r.
(r = 1, 0.999, 0.98, 0.933.) The inset compares prediction with
the measured MSD points (decimated by 1/4 for comparison).

N = 106 in order to remove noises. In (a) the MSD curve
at r = 1 is depicted, which corresponds to an ensemble
of free N logistic maps. Let’s call this as free gas limit
of GCML. Even though there is no interaction, the MSD
curve already exhibits an interesting structure. Why the
mean field of N independent maps at the large N fluc-
tuates in time? This comes from the basin set structure.
The GCML evolves from randomly chosen initial num-
bers for maps. After certain transient steps all the maps
come (independently) into period three attractor. (Pre-
cisely, for b = 1.75−1.7685 the attractor is purely period
three, then it repeats period bifurcation to chaos within
the window.) Let’s denote θi (i = A,B,C) the popu-
lation fraction of the maps subject to each of the three
bands (with the center value xA, xB , xC) at some time
n0 after the transient. Then, the mean field evolves as

h(n0) = θAxA + θBxB + θCxC

h(n0 + 1) = θAxB + θBxC + θCxA

h(n0 + 2) = θAxC + θBxA + θCxB

which is clearly not a constant in time; its oscillates in
period three with the MSD dictated by the basin struc-
ture characterized by the θ’s and the period three orbits
x’s of the single logistic map. We can make a predic-
tion for MSD from the above formula for h(n) (with the
variation of the θ’s taking into account) and the analytic
orbits xA, xB , xC (for b below the first bifurcation in the
p3 window). It remarkably explains the measured MSD
structure of the free gas GCML as exhibited in the inset.

Then, in (b), at r = 0.999, we find that remarkably
high MSD peak around the threshold of the p3 window.
The p3c1 cluster attractor is now formed. For other b
values, the model is still approximately the free gas p3c3
state (with population unbalance).

In (c), at r = 0.98, we find now all of the PM’s. See
Fig. 4 for an enlarged plot. The p3c1, and p3c2 cluster
attractors form in the MSD curve the highest and the sec-

ond high steps respectively. Their evolution is depicted
in the respective insets. Then, at higher b, MSD curve
shows unbalanced p3c3 plateau. Remarkably, around the
closing point of the p3 window, the MSD valley due to
approximate p3c3 MSCA is formed. The averaging in-
teraction with ε ≈ 0.01 now starts changing the free gas
(unbalanced) p3c3 into maximally symmetric p3c3 clus-
ter attractor (p3c3 MSCA).

In (d), at r = 0.933, we find p3c2 high MSD plateau in
the smaller b and a remarkable MSD valley in the middle
of the window. The latter is induced by the bifurcated
p3c3 (that is p6c6) as discussed in ref. [6] with analytic
consideration on its stability. It is formed around the
super-stable point of the p6 orbit of the element maps.
At this r the GCML dynamics has completely changed
from free gas to the synchronization dynamics.
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FIG. 4: Change of GCML synchronization with nonlinear
parameter b of element maps as seen by the steps of MSD.
(r = 0.98, N = 106.) Insets exhibit corresponding cluster
attractor. The seagull structure of MSD curve is induced by
p3c3 cluster in MSCA configuration. Dashed line is prediction
for MSD at p3c1 cluster attractor.

III. MECHANISM OF CLUSTERING

Here we clarify the mechanism how the p3c2 cluster
attractor is realized. It consists of only with two clus-
ters, each in period three motion; a deformed state of
p3c3 MSCA with a lack of one cluster at the higher cou-
pling. To understand further we adopt a line of argu-
ment presented by Shibata and Kaneko to explain the
collective motion in GCML [3]. At the p3c2 cluster
attractor, the mean field oscillate in period three (say,
hA → hB → hC → hA → · · · ). Then, the maps evolve
at every three steps by F3(x) = FC(FB(FA(x))) where

FA(xi) = (1 − ε)fa(xi) + hA

FB(xi) = (1 − ε)fa(xi) + hB

FC(xi) = (1 − ε)fa(xi) + hC .

An important observation is that at each step all maps
obey the common logistic map F ’s. Therefore it suffice
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to study F3(x) to investigate p3c2 cluster attractor. In
Fig. 5, F3(x) with measured values of hA, hB , hC at p3c2
cluster attractor are shown along with the line y = x. We
clearly observe that the case resembles the tangent bifur-
cation of a single logistic map, but there is an important
difference. Now, we observe that only two crossings are
stable and each of them attract maps forming two clus-
ters. This is the mechanism for the realization of p3c2
cluster attractor. More analytic treatment involving the
prediction of the values of hA, hB , hC is under study.
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FIG. 5: The mechanism for the p3p2 cluster synchronization.
F3(x) = FC(FB(FA(x))) crosses the line y = x at just two
stable points, which attract the maps to form eventually two
clusters in period 3 motion with 2π/3 mutual phase difference.

IV. MANY SMALL WINDOWS

Up to this point we focused our attention to the pre-
dominant period three PM’s. Before closing this article
we comment on the sharp valleys and peaks in the MSD
curve in the lower and upper b regions than the p3 win-
dow. We show here that they are the reflection of the win-
dows with narrower widths. In fact there is (2p−1 − 1)/p
windows with a prime number period p [10, 11] and, with
the increase of p, they become more dense in the interval

of the nonlinear parameter b. Accordingly the width of
the window rapidly becomes narrower. We find that it
is sufficient to include the windows with period less than
20 in order to account for the valley and peaks in the
lower b region than the p3 window. In Fig. 6, we show
the location of windows by the zeros of the supertruck
functions. It can be seen that these windows are respon-
sible for the valley and peak of the MSD curve (N = 106

GCML sampled at r = 0.98).
In summary we have reported our new observations on

the periodicity manifestations of the homogeneous logis-
tic GCML. A new phenomena induced by the basin struc-
ture in the free gas GCML is reported. The change of the
GCML dynamics from the free gas model to the synchro-
nization with the decrease of r from 1 (the increase of ε
from zero) is studied in detail. The mechanism realizing
p3c2 cluster attractor is shown. The relation between
the many small valley-peak structure and the periodic
windows are exhibited by the supertruck technique.

FIG. 6: Valley-peak structure of the MSD curve (lower) and
zeros of supertruck curves (upper). Zeros of p = 19, 20
windows are shown by solid lines and those with lower pe-
riod by dotted lines. (p = 11, 13, 14, 15, 16, 17, 18, 19, 20 win-
dows contribute respectively 1, 1, 1, 3, 4, 6, 10, 16, 26 zeros for
b ∈ [1.73, 1.75].)
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