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We revisit the periodic orbit theory for anisotropic Kepler problem, which is an important play-
ground for the quantum chaos. In order to explore the periodic orbit Gutzwiller devised an iteration
scheme, which computes Fourier coefficients of the orbit iteratively. Here we note in a nutshell all
one needs is the primary periodic orbit. We propose an alternative scheme taking account for the
symmetry of the target trajectory and the scaling property of the AKP equation of motion. We
show a simple shooting scheme gives almost immediately the final periodic orbit.
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I. INTRODUCTION

Recently by the advent of nano-scale devices the han-
dling of various quantum systems in a laboratory be-
comes viable. A good example is a quantum dot, which
confines electrons in a two dimensional region of several
hundreds nano-meters in size. This device, under an ex-
ternal magnetic field and at low temperatures, exhibits
electric conductance depending on the shape of the re-
gion of confinement; it depends whether the region allows
regular classical orbit or the region induces the chaotic
orbit. Then, natural question arises; if the classical the-
ory for a system involves chaos, does it somehow affect
the quantum behavior of the system? The solution of
this question will give a clue for the real foundation of
quantum theory.

Two possible approaches to this problem may be envis-
aged; random matrix theory (RMT) and periodic orbit
theory (POT). In RMT, the Hamiltonian of the system
is approximated by a matrix whose elements are random
numbers. The symmetry of the system dictates the type
of the ensemble of the random matrices. For instance, for
large nuclei, the nearest neighbor spacing distribution of
the energy level agrees well with that of a real symmetric
random matrix (rather than a simple Poisson distribu-
tion). Then, in POT, based on the Feynman’s path in-
tegral, the quantum characteristics in the semi-classical
regime is estimated from classical orbits. Therefore, it
is suited to investigate the classical-quantum correspon-
dence. For instance, it is a vital tool for the analysis of
the shell effect in the total energy of nuclei.

In a series of works [2–4], Gutzwiller studied various
spherically symmetric potentials. These are all integrable
cases because the separation of variables is possible; the
classical orbits are regular. These may be regarded as
a preparation for the next step towards the POT. In a
seminal work [5], Gutzwiller extended the work to a non-
integrable Hamiltonian system, whose classical trajectory
is chaotic. Gutzwiller’s quantization condition is

S(E) = 2π~(n + ℓ(E)/4). (1)

Here, E is the total energy of the chosen periodic orbit

and S is the action integral

S(E) =
∮

pidqi, (2)

along the periodic orbit for one period, and ℓ is a number
of conjugate points along the periodic orbit. The energy
levels En are given by solving the condition (1). The con-
dition (1) is then applied to anisotropic Kepler problem
(AKP) and the resulting energy levels are in good agree-
ment with those by solving the Schrödinger equation.

As is well known, the energy levels of an ordinary Ke-
pler problem are given by −1/n2 in appropriate units
with the principal quantum number n. In AKP, the en-
ergy levels turn out again to be proportional to −1/n2,
and the anisotropy affects the proportionality coefficient
γ2. (γ = 1 for the Kepler problem). In order to com-
pute the value of γ for a certain anisotropy, it is neces-
sary to find a periodic orbit as a solution of the equation
of motion of AKP. In [5], a fundamental periodic orbit
and its γ are calculated using an iteration scheme. How-
ever, this iteration scheme is somewhat elaborated and
requires large computation time.

In this paper, we present an alternative scheme to
find the fundamental periodic orbit by a simple shoot-
ing scheme. In our method a scaling property of the
system is fully accounted and the symmetry of the orbit
shape helps to reduce the shooting analysis to only one-
dimensional. The resulting γ is in good agreement with
the Gutzwiller’s value.

II. ANISOTROPIC KEPLER PROBLEM

The AKP is a Kepler problem with an anisotropic mass
tensor. It includes the motion of an electron confine in a
semiconductor. The Hamiltonian of the two-dimensional
AKP is

H(p, q) =
p2
1

2m1
+

p2
2

2m2
− e2

κ
√

q2
1 + q2

2

. (3)

with (q1, q2) the position of the electron and (p1, p2)
the conjugate momentum. The m1, m2 are the diago-
nal elements of the electronic mass tensor and we choose
m1 > m2 (q1 is ‘the heavy axis’).
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The dimensionless variables for energy, length, fre-
quency are respectively defined in the units

E0 =
m0e

4

2κ2~2
, a0 =

κ~2

m0e2
, ω0 =

m0e
4

κ2~3
(4)

with m0 =
√

m1m2. Dimensionless coordinates and tem-
poral parameter are respectively defined by

ξ ≡ q1√
µa0

, η ≡ q2√
νa0

, τ ≡ ω0t. (5)

In order to write the Hamiltonian (and action) with the
dimensionless variables, it is convenient to pass through
the Lagrangian formalism. The Lagrangian in terms of
the dimensionless variables is obtained as

L ≡ L

E0
= ξ′ 2 + η′ 2 +

2
√

µξ2 + νη2
(6)

where the prime indicates the derivative with respect to
τ and the relation d/dt = ω0d/dτ is used. The dimen-
sionless conjugate momentum is

pξ =
∂L
∂ξ′

= 2ξ′, pη =
∂L
∂η′ = 2η′, (7)

and therefore the dimensionless Hamiltonian is given by

h ≡ H

E0
=

p2
ξ

4
+

p2
η

4
− 2

√

µξ2 + νη2
, (8)

with µ = 1/ν =
√

m2/m1 < 1. The Hamilton equation
in the dimensionless variables is

ξ′ =
∂h

∂pξ
=

pξ

2
, p′ξ = −∂h

∂ξ
= − 2µξ

(µξ2 + νη2)3/2
,

η′ =
∂h

∂pη
=

pη

2
, p′η = −∂h

∂η
= − 2νη

(µξ2 + νη2)3/2
.

(9)

The energy conservation equation calculated from Eq.
(8) with Eq. (7) is

ξ′ 2 + η′ 2 − 2
√

µξ2 + νη2
= ϵ. (10)

Only the bound states are discussed below, hence ϵ < 0
and trajectories in the ξη plane are all limited inside an
ellipse

µξ2 + νη2 =
(

2
ϵ

)2

. (11)

The form of the energy in (10) is quadratic in ξ′ and
η′ and it is homogeneous in ξ and η. Therefore we can
use the virial theorem to write the action from Eq. (2)
as

S

~
=

∫

(ξ′ 2 + η′ 2)dτ = −ϵ
2π

ω
. (12)

Here, ω is the dimensionless angular frequency in the unit
ω0.

In the case of ordinary Kepler problem, the shapes
of trajectories in bound states are all elliptic except the
radial motion. In the units (4), the total energy for the
elliptic orbit is represented by

ϵ = −ᾱ2ω̄2. (13)

Dimensionless variables ᾱ and ω̄ ()correspond to the ma-
jor radius and angular frequency of the elliptic orbit re-
spectively. Similarly, the Kepler’s third law is given by

ᾱ3ω̄2 = 1. (14)

These relations (13), (14) can be extended to the case
of AKP. The energy is

ϵ = −α2ω2. (15)

Again these are the dimensionless energy, size, fre-
quency of the AKP in the units (4).

The counterpart of Eq. (14) is introduced by

γ ≡ α3ω2. (16)

For each periodic orbit, γ takes a different value which
depends only on m = (µ − ν)/(µ + ν), the degree of the
anisotropy. It should be noted that for a non-anisotropic
case, i.e. m = 0, a relation γ(0) = 1 is satisfied, which is
the Kepler’s third law.

By the change of variables from (α, ω) to (ϵ, γ), the
action in Eq. (12) is rewritten as

S = 2π~
γ(m)
√

|ϵ|
. (17)

By the help of the quantization condition (1), the en-
ergy levels of the AKP turn out to be

ϵn = − γ2

(

n + ℓ
4

)2 . (18)

According to Eq. (18), if the value of γ and the number
of conjugate points are known for the particular periodic
orbit, then the energy levels of the AKP can be estimated
when the degree of anisotropy m is fixed.

For the fundamental periodic orbit discussed below, ℓ
equals to 2 and 4 for the two and three dimensional cases
respectively [5].

III. GUTZWILLER’S ITERATION SCHEME

In order to compute the value of γ, the search of the pe-
riodic orbit is needed. The target is the primary periodic
orbit. Its shape is oval; mirror symmetric about both ξ,
η axes. For m = 0 (the ordinary Kepler problem), the
shape is simply a circle, while with anisotropy, one can-
not derive the exact solution analytically. To search this
orbit, an iteration scheme is devised in [5]. In this scheme
complex coordinates are expanded in Fourier series as

ξ + iη = α

∞
∑

−∞
αjz

2j+1,

ξ − iη = α

∞
∑

−∞
βjz

2j+1, βj = α−j−1 ∈ R
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with z = exp (iωτ). Because the coefficients are calcu-
lated by a fixed algorithm below, the scale factor α is
needed. The iteration starts from an initial configura-
tion α0 = 1, α1 = α2 = · · · = 0 corresponding to a circle,
which is a primary orbit for a Kepler problem without
anisotropy. At each step of the iteration procedure, the
higher mode Fourie coefficients are computed from the
lower by a couple of recurrence relations (derived from
the equation of motion and the energy conservation). As
the iteration proceeds, the set of Fourie coefficients is
thus improved towards the final solution and the circle
at the initial time is deformed to the primary orbit of
AKP. At the end of the iteration the value of γ is calcu-
lated from the Fourie coefficients.

This scheme is advantageous in that the orbit is al-
ways closed and the symmetry is respected in every step.
However, the number of Fourier coefficients grows expo-
nentially. Therefore it is necessary to truncate the small
higher frequency terms. In order to improve both the
accuracy huge memory space and long computation time
are then required. The decision of whether sufficient con-
vergence is reached or not is difficult, because the conver-
gence is slow and oscillatory as we will reproduce below
[7].

IV. PERIODIC ORBIT SEARCH BY A SIMPLE
SHOOTING SCHEME

Now let us propose an alternative scheme which uses
a shooting method integrating (9). The symmetry of
the target orbit simplifies the search; a one-dimensional
search is sufficient.

From Eqs. (15), (16) we obtain

γ =
|ϵ| 32
ω

, α =

√

|ϵ|
ω

. (19)

Therefore, γ and α can be worked out by measuring the
period (T = 2π/ω) of the final orbit with energy ϵ. (The
energy can be chosen at an arbitrary value under the
scaling). All we need is the precise determination of the
period, that is, the precise determination of initial con-
ditions in the shooting scheme. Therefore, this scheme is
free from the problems of convergence and huge memory.

A. Choice of energy and the families of trajectories

Let us consider the scaling property of the AKP equa-
tion of motion. It is form invariant under the transfor-
mation

ξ(τ) → ξ̃(τ̃) = s · ξ(τ),
η(τ) → η̃(τ̃) = s · η(τ),

ϵ → ϵ̃ = s−1 · ϵ

τ → τ̃ = s
3

2 · τ.

(20)

Accordingly the period is scaled as T → s3/2 ·T . For the
scale of the orbit, α → s · α just like ξ and η.

This scaling property implies that there is a one-
parameter (s) family of orbits. What we need is to de-
termine the family to which the primary periodic orbit
belongs as a member. Therefore we can pick an arbi-
trary ϵ for the shooting. Another choice of ϵ will search
out another orbit but in the same family. Since the com-
bination γ ≡ α3ω2 is scale invariant, any member in the
same family will give the same γ.

B. The shooting scheme

Let us show that the search for the primary orbit (with
reflection symmetry with respect to both ξ and η axes)
requires only a one dimensional shooting scheme. From
the symmetry, it definitely passes through the ξ axis.
So we can choose the initial point on the ξ axis (ξ0, 0).
That is, we choose the ξ axis as a Poincaré surface of
section. From the symmetry it suffices to take ξ0 > 0.
Also from the symmetry the initial momentum must be
then at right angles to the ξ axis; pξ must be vanishing
((pξ)0 = 0). Furthermore, pη is computed from ξ0 via
the energy conservation (10). Thus, the initial condition
is given by

(ξ, η, pξ, pη) = (ξ0, 0, 0, pη(ξ0)). (21)

with pη = 2
√

2√
µξ0

+ ϵ. Therefore one-dimensional
search, varying ξ0 as a parameter, is sufficient. The
bound for ξ0 is 0 < ξ0 < ξmax ≡ 2/

√
µ|ϵ|.

From this initial point the Hamilton equation is in-
tegrated until the trajectory crosses again the Poincaré
surface of section (η = 0). We call this first intersection
(after the initial point) as the final point.

The constraint in the shooting scheme is two-fold

ξ1 = ξ0, (pξ)1 = 0. (22)

The integration preserves the energy so that the condi-
tion (pη)1 = (pη)0 automatically follows from ξ1 = ξ0.
The integration is iteratively repeated until the differ-
ences δξ ≡ ξ1 − ξ0 and (pξ)1 reach zero.

The constraint (22) is put on the first crossing of the
Poincaré section so that it is strong enough to single out
the primary orbit. In fact there is (at least) one other
solution which is symmetric with respect to both ξ and
η axes, but it is oscillatory and after many crossings it
comes back to the starting point.

C. The initial value ξ∗0 of the primary orbit and
theγ in the shooting scheme

To be explicit let us choose the anisotropy m =
0.899 (µ = 0.231) (the germanium) and pick ϵ = −0.1.
Fig. 1 is a plot of δξ and (pξ)1 as functions of ξ0. We
observe δξ changes the sign as ξ0 passes a critical value
of ξ∗0 ≈ 4.9. This ξ∗0 is the initial value of the primary
periodic orbit. Using the bi-section method for ξ∗0 , we
obtain more precise value ξ∗0 = 4.893087. The period of
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FIG. 1: δξ(solid line), (pξ)1(dashed line) versus ξ0. ϵ = ¡0.1.

this solution turns out T = 151.2541 and the angular
frequency is ω = 4.154059 × 10−2.

With this ω and ϵ = −0.1 we obtain from (19)

γ = 0.7612500, α = 7.612500. (23)

V. COMPARISON BETWEEN THE TWO
SCHEMES

Let us reproduce the computation in [5]. The funda-
mental periodic orbit and γ may be computed at every it-
eration step, and hence we can compare them with those
by our scheme.

1) The comparison of orbits. In Fig. 2, the orbits at
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FIG. 2: The orbits from the iteration scheme (dashed lines)
as compared with the one from the shooting scheme (the solid
line). Numbers indicate the iteration steps.

several steps of the iteration scheme are compared with
the orbit obtained by our shooting scheme. The latter is
normalized by the scale factor α in Eq. (23). The zero-
th step orbit is a unit circle; as the iteration proceeds, it
approaches oscillatory the orbit obtained by the shooting
scheme.

2) Comparison of the parameter γ. As seen in Fig.
3, γ in the iteration scheme decreases in oscillation, but
after the 17th step, the decrease becomes slower and the
oscillation remains. Therefore it is difficult to judge the
convergence. The asymptote may be slightly above γ
determined by the shooting scheme, but it may also be
in agreement if iteration is continued further. But the
necessary number of the Fourier coefficients is approxi-
mately 2n+1 in the n-th iteration step and such calcula-
tion is practically difficult.
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FIG. 3: Comparison of iteration result with that by shooting
(23)(horizontal line) up to 20th step. m = 0.899 (Ge case).

In Summary, in Gutzwiller’s scheme one has to com-
pute exponentially increasing number of Fourier coeffi-
cients at each step of the iteration, while in our shooting
scheme, it is just sufficient to integrate the orbit from the
initial point to the first Poincaré section at each step of
the iteration.

[1] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
[2] M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967).
[3] M. C. Gutzwiller, J. Math. Phys. 10, 1004 (1969).
[4] M. C. Gutzwiller, J. Math. Phys. 11, 1791 (1970).

[5] M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971).
[6] R. A. Faulkner, Phys. Rev. 184, 713 (1969).
[7] This is remedied by a prescription [5]; make the variation

small at chosen intervals.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 328




